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Chemistry-Inspired Pattern Formation with
Robotic Swarms

Paulo Rezeck and Luiz Chaimowicz

Abstract—Self-organized emergent patterns can be widely seen
in particle interactions producing complex structures such as
chemical elements and molecules. Inspired by these interactions,
this work presents a novel stochastic approach that allows a
swarm of heterogeneous robots to create emergent patterns in
a completely decentralized fashion and relying only on local
information. Our approach consists of modeling the swarm con-
figuration as a dynamic Gibbs Random Field (GRF) and setting
constraints on the neighborhood system inspired by chemistry
rules that dictate binding polarity between particles. Using the
GRF model, we determine velocities for each robot, resulting
in behaviors that lead to the creation of patterns or shapes.
Simulated experiments show the versatility of the approach in
producing a variety of patterns, and experiments with a group
of physical robots show the feasibility in potential applications.

Index Terms—Swarm Robotics; Multi-Robot Systems; Dis-
tributed Robot Systems.

I. INTRODUCTION

YSTEMS of a large number of particles dynamically

interacting pairwise produce extraordinarily complex pat-
terns [1], [2]. Well-known examples of patterns gener-
ated by these systems are molecular structures that emerge
from atomic interactions depending on environmental con-
ditions [3], [4]. The study of such systems pervades many
disciplines ranging from physics and chemistry to biology
and pharmacy, having high societal and economic impact.
In particular, one may use it to design new compounds or
materials and understand biological systems.

Although challenging, the study of such systems may
provide powerful tools for a wide variety of applications
in robotics, especially for swarm robotics in pattern (shape)
formation problems. The pattern formation problem may be
defined as the coordination of a group of robots to get into
and maintain a formation with a certain shape [5]. A key
aspect for the applicability of these models in swarm robotics
is the requirement for distributed and decentralized processing
relying only on local information. Models with these charac-
teristics bring several practical advantages allowing scalability,
resiliency, and adaptability. Examples of potential applications
would be oil spill containment or cleaning in oil plants [6],
[7] and constructing structures such as a temporary bridge that
could dynamically adjust its size and shape to fit different
environmental conditions [8].

By revisiting some of the concepts and theories applied in
particle interactions and molecular structures formation, we
create a minimalist model suitable for robot swarm control.
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Fig. 1: Robots mimicking atoms of carbon (red) and oxygen
(blue) create emergent chain patterns useful for dynamic
bridge-building applications. Robots with red flags indicate
the beginning and end of the chain.

This work presents a novel stochastic and decentralized ap-
proach that allows a swarm of heterogeneous robots to emerge
with interesting patterns relying entirely on local interactions
with neighbors. Our approach consists of modeling the robot
swarm as a dynamic Gibbs Random Field (GRF) and defining
the neighborhood system inspired by the Octet rule used
in chemistry. By setting the GRF’s potential energy as a
combination of Coulomb-Buckingham potential and kinetic
energy, we formulate a probability distribution used by each
robot to sample most likely velocity commands. As a result,
the robots can safely navigate through a bounded environment
and bind with others forming dynamic global patterns using
only local interactions.

We believe that this approach has potential use in various
scenarios, especially those where one may want to build
more complex structures from simple ones. A possible ap-
plication is modular robotics, in which complex robots are
built from simpler modules and can dynamically change
their shape/structure. The bonding behaviors would guide the
connection of the modules in a simple and dynamic fashion.
Another application is the construction of temporary structures
such as bridges and platforms, with different industry and
military uses. Fig. 1 shows an example of a swarm self-
organizing to form a bridge in the environment by using robots
that mimic atoms of carbon and oxygen.

The remainder of this paper is organized as follows: we
review and discuss some of the most relevant works in swarm
robotics regarding pattern and shape formation in Section II.
Our methodology is detailed in Section III, and experimental
results in simulated and real scenarios are presented in Sec-
tion I'V. Finally, we close this paper with our conclusions and
directions for future work in Section V.

II. RELATED WORK

Pattern formation occurs in nature at all scales and is a fun-
damental question across interdisciplinary research, including
topics on physical chemistry [9], [10], cosmology [11], and
biochemistry [12], [13]. Several patterns or shape formation
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approaches have also been proposed in the literature for multi-
robot systems [5], [14]-[17]. Most of these works assume
global information, which allows each robot in the swarm to
directly perceive every other robot [18]-[21]. Such assump-
tions allow for fast and efficient convergence of the swarm in
pattern formation but may be unrealistic in real applications.
Others assume that global information is not always available
and deal with the task allocation problem in which robots must
coordinate to reach different predefined positions that form
patterns or shapes [22]-[26]. A typical strategy to avoid the
requirement of defining positions describing the patterns con-
sists of using seed robots in which some robots do not move
and act as a reference to the others helping the swarm to create
complex global patterns [27], [28]. Differently from these,
our approach assumes minimal and local-only information to
produce interesting patterns that resemble molecular shapes.
Minimalist approaches are attractive for swarm robotics due
to the low sensing capability of the robots, and recent work
has shown their feasibility for self-organization problems [29]-
[32]. In the remaining of this section, we discuss some works
that tackle the problem using mainly local information and
then present the main contributions of this work.

Sahin et al. [33] designed a robotic system called swarm-
bots. The robots can connect to or disconnect from each
other using a grasping mechanism enabling self-assemble
into different kinds of structures. Inspired from social insect
studies [34], the authors employed a probabilistic approach to
control the robots. Preliminary results in simulation show that
the robot can create patterns, such as a single stripe pattern,
beyond the perceptions of individual robots. Despite having
a complex dynamic, some aspects of the resulting patterns,
such as the mean length of chains, can be controlled through
parameters such as the disconnection probability in chain
formation behavior. Although the authors do not demonstrate
the pattern formation using real robots, the robotic system
and control strategy favored the development of several other
studies, such as aggregation [35] and self-assembly [36].

Slavkov et al. [37] proposed a morphogenesis approach
inspired by spontaneous phenomena observed in some biolog-
ical systems during embryogenesis [38]. The shapes emerge
in a fully self-organized way. The robots rely only on local
interactions with neighbors and do not require maps, coordi-
nate systems, or preprogrammed seed robots. The approach
uses the concept of robot migration (in analogy with natural
developmental biology) and gene regulatory networks (GRN)
to create a self-organizing Turing process for pattern forma-
tion. The authors successfully demonstrated their method in a
swarm of 300 real robots, showing robustness and adaptability
in forming Turing patterns.

Further, Carrillo-Zapata et al. [39] extended the previous
approach to increase the controllability of the system, enabling
the formation of specific patterns. The author designed a
morphogenesis algorithm based on local gradients for swarms
of simple and noisy robots capable of communicating among
them. By setting three parameters, robots self-organize to
grow controllable shapes while maintaining the communica-
tion network. Results demonstrated that the swarm emerges
with the rich morphospace of quantitatively different shapes
by changing these parameters.

Li et al. [40] proposed a case study of pattern formation
that can be applied to any shape described as a 2D point
cloud. The authors present an algorithm that transforms a given

point cloud into an acyclic directed graph shared among the
swarm members. This graph is used by the control law to
allow the swarm to progressively form the target shape based
only on local decisions. This means that free robots find their
location based on the perceived location of the robots already
in the formation. Extensive simulations and experiments on
real robots show the effects of swarm size. Results indicate
that the algorithm is robust to noise and can handle different
formations and shapes.

Coppola et al. [41] presented a minimalistic approach to
generate a local behavior that allows a swarm of homogeneous
robots to self-organize into a desired global pattern by relying
only on the relative location of their closest neighbors. The
generated local behavior is a probabilistic local state-action
map, and robots follow policies to select appropriate actions
based on their current perception of their neighborhood. Sim-
ulations showed the method’s robustness against sensor noise
and demonstrated the formation of patterns using micro air
vehicles. In addition, the authors discuss the scalability of the
method and synchronization issues between robots. Although
the method uses robots with limited sensory apparatus, it
requires a connected topology in the initial configuration of the
swarm and an environment discretized by lattices to guarantee
the convergence of the swarm in the pattern without suffering
from deadlocks.

Unlike other works, we took inspiration from the Octet
rule in chemistry to generate patterns with a robotic swarm.
Basically, the Octet rule defines the number of bonds each
atom preferably makes. The application of the Octet rule
in the robotics’s context is yet restricted. Shiu er al. [42]
presented the design of modular robots that uses the Octet rule
to dictate attraction force and motion capability. Randall et
al. [43] proposed a decentralized mechanism that aims to
simulate chemical reactions using a swarm of miniature robots.
The motivation for this work lies in the development of
an educational tool to simulate chemical reactions capturing
either behavioral or embodied aspects, differently from other
tools such as computer simulations or ball-and-stick models.
The proposed mechanism replicates what would be expected
by simulations of physical-chemical models as faithfully as
possible. It uses various built-in sensors to detect neighboring
robots and dictate the bonding rules by using direct com-
munication between robots that periodically broadcast state
messages.

Unlike these works, our approach takes chemistry and
particle physics concepts as inspiration to design a proba-
bility distribution function that works for controlling robotic
swarms. In a nutshell, our method models the swarm as a
dynamic GRF and constrains the neighborhood system by
the Octet rule. By setting the GRF’s potential energy as a
combination of Coulomb-Buckingham potential and kinetic
energy, we formulate a probability function that indicates in
a decentralized fashion which velocities are most likely for
each robot given its local perception of the environment.
As a result, the swarm creates diverse global patterns that
cohesively navigate and adapt to the environment. The contri-
bution of this work comes in many folds. To the best of our
knowledge, this is the first work to combine these concepts into
swarm robotics bringing another perspective in comparison
to other swarm controllers. Our approach is minimalist and
multi-emergent, allowing different swarm behaviors to arise
indirectly by sampling velocities commands in a probability
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function. Moreover, it does not rely on global information,
goal assignments, communication topology, or preprogrammed
seeds to produce patterns.

III. METHODOLOGY

The proposed methodology extends our previous work [44],
in which we designed and evaluated a novel approach that
allowed a swarm of heterogeneous robots to achieve flock-
ing and segregative behaviors simultaneously. After further
exploring and improving our method, we realized that by
incorporating dynamic constraints to the neighborhood system
and adequately defining the swarm heterogeneity and GRF’s
potentials, the swarm would be able to produce specific
patterns, a more complex and restrictive task in comparison to
flocking, and with more tangible applications. As mentioned,
by taking inspiration from the Octet rule in chemistry, we
propose a computational-efficient mechanism to constrain the
neighborhood system used by the Gibbs Random Field (GRF),
enabling the formation of patterns that resemble molecular
structures. A detailed description of our method is given in
the next sections.

A. Formalization

Given a set R of n heterogeneous robots moving in a
bounded region within the two-dimensional Euclidean space’,
the objective is to find an appropriate velocity for each robot
in a decentralized way that leads the entire swarm to converge
towards the global minimum of the potential. Before we detail
our method, let us define some concepts and assumptions.

Definition 1 (Robot state). The state of the ¢-th robot at time
step t is represented by its pose qgt) and velocity (ji(t) = vgt),
which is bounded by v, \vgt)H < Umaz-

Definition 2 (Heterogeneity). The swarm heterogeneity is
modeled by a partition 7 = {7,..., 7}, u < 7, with each
T C 'R containing exclusively all robots of type k, i.e.
V(j,k):j #k — 1, N71; = 0. The heterogeneity is defined
by the mass m and electrical charge? ¢ of the robot so that,
Y(i,7) GTkITkCT%miémj andciécj.

Assumption 1 (Motion model). For convenience, we

assume the robots are driven by a holonomic kine-

matic model® with a known motion model represented by
t) (¢ t+1

K: (@, vi?) = (qh).

Assumption 2 (Sensing). The robots have a circular sensing
range of radius \. Within this radius the robot can estimate
the relative position and velocity of other robots as well as
their type, and also obstacles in the environment.

Definition 3 (Neighborhood system). The neighborhood sys-
tem for the i-th robot, constrained by the sensing range A,
defines a set of robots:

Ni2{jeR:j#illa; —aill <A,

where ||q; — q;]| is the Euclidean norm between the i-th and
j-th robots.

'We assume two-dimensional space for convenience but one can straight-
forwardly extend it to a three-dimensional space.

2The electrical charge is just a parameter and it has no tangible concept in
this context of swarm robotics.

3This assumption can be relaxed as will be shown in Section IV-B.

Definition (3) states that the neighborhood system is re-
stricted only by the sensing range A and do not differentiate
robots of different types. By considering electrical charge as
heterogeneity parameters, one may incorporate constraints that
allow robots to experience different levels of interaction with
their neighbors.

B. Octet rule constrained neighborhood

Inspired by some concepts and models of atom interactions
in chemistry, we propose a mechanism to restrict a robot to
only bind with a certain number of other robots of specific
types within its neighborhood. This mechanism is motivated
by the Octet rule [45], a relatively simple rule which uses an
electron counting formalism for predicting bonding. Based on
the Octet theory, the Octet rule generally states that atoms tend
to combine so that each of them has eight electrons in their
valence shell. The principle is that molecules tend to be more
stable when the outer electron shell of each of their atoms is
filled with eight electrons. In fact, in nature, all systems tend
to acquire as much stability as possible. For example, atoms
bind together to form molecules to increase their stability.

In the context of heterogeneous swarm robots, the proposed
mechanism inspired by the Octet rule works as a constraint to
describe how the robots should interact. Depending on their
state and neighborhood, they may decide to stay closer to one
type of robot and away from other types.

From a mathematical point of view, one may create such
mechanism by ordering the robots by their electrical charges
and relative distances in a two-dimensional data structure.
Formally, let us define the concept of ordered neighborhood
concerning the ¢-th robot.

Definition 4 (Ordered neighborhood). The ordered neighbor-
hood for the i-th robot concerning the Euclidean distance
is defined as an ordered set NV; = (N;, <), where V(j, k) €

Ni = |la; — dil| < |lax — qi|| and (4, k) are ordered pairs.

Once the neighbors of the i-th robot are ordered by distance,
let us define the concept of bond partition used to group robots
of the same type.

Definition 5 (Bond partition). The bond partition for the i-th
robot is a ordered partition B; £ (Bi1, ..., Biu; =), where the
ordered set (B; ;) is a ordered neighborhood containing robots
that have the same electrical charge among them, V(j, k) €
(Bip) = llejll = llckl|l- Robots with higher charges have
precedence over the ones with lower charges, i.e. Vj € (B, )
and Vk € (B p+1) — |l¢j|| > ||cx||, where the pair (p,p+ 1)
define two consecutive ordered sets in ;.

From the previous definition, we can establish a data struc-
ture that allows ordering the robots within the neighborhood
both by their distance and their electrical load. Now, let us
state constraints restricting the number of neighbors the robot
can bind.

Definition 6 (Maximum bond constraints). The bond partition
B; for i-th robot has a limited number of robots defined by
B, 1B:| < B and robots of the same charge have the
same limit, V(i,j) € 7 : ¢; = ¢; — B £ B, Moreover,
the number of robots in each subset of B; is also restricted by
1Bip| < B

After defining the bond partition, we create a procedure
that reduces neighboring robots to such data structure. The
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Algorithm 1 Generating B; for i-th robot

1: procedure BONDPARTITION(N;)
2 B+ 0 > Creating bond partition
3 N < sort(N;) > Sorting neighbors by distance
4: for j € N; do

5 if |B;.,| < Bj%) then > Add robot j-th robot
6 if |Bi..,| < BIY then

7 Bi,c_]- — Bi,C_;’ +]

8  B; <+ sort(B;)

9: bonds < 0

10: for ¢, € B; do

> Sorting partition by charge value
> Count the number of bond

11: for j € B, do
12: if bonds < B> then
13: bonds < bonds + 1 > Add bond
14: else
15: Bi.c, < Bic, —j7 > Remove j-th robot
16:  return B;

No By
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Fig. 2: State of the bond partition for a given robot and its
neighborhood. Carbon-like robots (red) can only bond with a
maximum of four hydrogen-like (gray) robots.

mechanism is presented in Algorithm 1. In general, the mecha-
nism prioritizes bonds with closer robots with higher electrical
charges, respecting the maximum bond constraints.

Remark. The swarm generates different patterns by setting
different maximum bond constraints By'y* for each B; , C B;
and respecting the previous definitions.

Such mechanism forces robots to interact differently de-
pending on the maximum bond constraints. For example, let
us assume a swarm composed of two types of robots that
resemble the carbon and hydrogen atoms. The carbon-like
robots can bind a maximum of BF* £ 4 robots in their
neighborhood, and the hydrogen-like robots can only bind
with BE* £ 1 robot. By setting the maximum number of
robots of type carbon and hydrogen each type can bind to,
the swarm will produce different patterns. Suppose we define
that carbon-like robots can bind with (Bg¢, BEy) £ (0,4)
and the hydrogen-like robots with (Bt Biy) 2 (1,0).
In that case, we should observe the formation of a structure
resembling the methane molecule. Fig. 2 shows the state of
the bond partition of a carbon-like robot and its neighborhood.

After defining a new neighborhood structure, we proceed
with the modeling of the swarm configuration as a dynamic
GRF and how the velocities of each robot are set so that the
patterns emerge.

C. Applying GRFs concepts to swarm robotics

We model and control the swarm of robots as a dynamic
Gibbs Random Fields (GRFs). Due to space restrictions, here

we only present the key aspects of this approach without
providing a thorough background. More details can be found
in [44].

Formally, a random field is an undirected graph G = (R, E)
with each vertex representing one of the robots. The neigh-
borhood system presented previously induces the configuration
of the graph G by establishing an edge between two robots if
they are bound. A random field on G is a collection of random
variables X = {X; };cr and, for each i € R, let A; be a finite
set called the phase space for the ¢-th robot. A configuration of
the system X at time step ¢ is defined as x*) = {vi, vl
where v; € A; and represents the velocities performed by each
robot at that time step.

The random field X is defined as a GRF if the joint
probability density of the system is represented by,

1 T z
P(X =x) = Ee_#, with 2= 3" ", (1)

where Z is a normalizing term; 7" is a constant interpreted as
the temperature in the statistical physics context and taken

as equal to 1 in this paper; %e’# is called the Gibbs
distribution; and H (x) is the potential energy of the system.

The distribution function given by (1) enables us to compute
the probability of the entire swarm reaching a certain con-
figuration x, but it requires global knowledge. As described
in [44], it is possible to obtain the following probability
distribution that assumes only local information and enable
us to sample velocities for each robot in a decentralized way:

e* (U{i} (‘7i)+ngi Uli,g} (‘_’iv"j))

Pi(Vi, \_fi‘X) =

» (2)
2;€Z;(x)
where Z;(x) = {z; : ||zi]| < Umaz} is a set of possible
velocities for the i-th robot given N;, restricted by Z;(x) C
A;; U(+) are potential functions; and v; is a velocity sampled
in Z;(x) representing a likely velocity for the next time step,
Vi(tJrl) = Vj.

Note that to sample over the distribution function (2), it is
required to define the potential energy as a combination of
appropriate potential functions that quantify the state of the
swarm concerning a physical property or behavior.

D. Potential energy

The potential energy H () consists of the summation of val-
ues produced by potential functions, U4 : A — R. Formally,
it is defined by pairwise interactions between neighboring

vertices as

H(x) = Z U{i} (VZ) +
IER (1, )ERXR,JEB;

U{i,j}(vivvj)v (3)

where Uy;y(v;) is interpreted as the potential for the i-th robot
to reach the velocity v;, and Uy j1(vi, v;) is the potential
regarding the velocities of the neighboring (v;,v;) pair of
vertices.

Here we propose combining the Coulomb-Buckingham po-
tential with the kinetic energy. The kinetic energy is computed
from the relative velocities among all robots in the bond
partition and induces the group to reach consensus on their
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velocities allowing for cohesive navigation. The kinetic energy
Ey relative to the i-th robot is:

1
V= Z v, Ex(V;) = §m(Vz‘ Vi), “)
VjieB;

where m is the cumulative mass of the group.

The Coulomb-Buckingham potential [46] is a combination
of the Lennard-Jones potential with the Coulomb potential
used to describe the interaction among particles considering
their charges. The formula for the interaction is

o) = (e (1= ) — 2% (1)) + 55 ©
where r = ||q; — qq|| is the euclidean distance between the
particles 7 and j; € is the depth of the minimum energy; 79
is the minimum energy distance; « is a free dimensionless
parameter; ¢; and c¢; are the charges of the particles ¢ and j;
and € is an electric constant.

Considering the ¢-th robot, the interaction with j-th robot

follows the constraints established by it bond partition 5;, and
the product c;c; is defined by,

C(i,5) = (1 =2 1(j € By)) |eicsl, (6)

where 1(-) indicates if the j-th is on the partition 5;. If so,
then |c;c;| is set negative generating attractiveness among the
i-th and j-th robos. Otherwise, they repel each other.

The final potential energy term is computed combining
Coulomb-Buckingham potential and the kinetic energy as
described in [44].

E. Sampling algorithm

Finally, given the probability function (2) and the potential
energy one may use a MCMC algorithm to sample velocities
for the i-th robot. In this work, we use the Metropolis-Hastings
algorithm [47], one of the most widely used and efficient
methods for sampling probabilities when the normalizing
constant is unknown. As the conventional Metropolis-Hastings
algorithm was originally proposed for discrete state spaces,
we use an alternative method presented by Walker [48] for
sampling on a countably infinite state space of velocities. This
alternative to the Metropolis-Hastings algorithm is presented
in Algorithm 2.

IV. EXPERIMENTS AND RESULTS

This section demonstrates how a swarm of heterogeneous
robots can create diverse patterns using different neighborhood
constraints. Further on, we use a realistic simulator as well as
real-robot experiments to show that our method may serve
as basis for more tangible applications, for example the
construction of chain/bridge like structures. The source code
and videos of each experiment are available online *.

A. Diversity of patterns

To evaluate the versatility and efficacy of our method in
producing different types of patterns with a swarm of robots,
we show through numerical simulations four examples where
each one has different maximum bond constraints. In all ex-
amples, we assume a heterogeneous swarm of 1 = 180 robots,

“https://rezeck.github.io/chemistry-inspired-swarm.

Algorithm 2 Sampling velocity for ¢-th robot at time ¢ + 1

> Current state
> Set of velocities
> Set of potential energies

1: procedure UPDATE(q; !, v;()
2 VO ;@)

3 UO  Hg®,v0),
4 for k< 1toZ do

5: vV« N(vi®,®), > Gaussian sampling
6 a«— H(q®,v),

7 AE + u—U®=1Y  Potential energy variation
8

9

g < exp(—AE), > Compute the Gibbs energy
: r <+ U(0,1), > Uniform sampling
10: if (AE <0)V (r <g) then > Sample accepted
11 V& 3,
12: U® « q,
13: else > Sample rejected
14: V&) vkl
15: Uk « glk-1),

16: V  VU-D), > Reject the first j velocities
17 vy (VI L+ VD /(T - q), > Average
18: return v; ¢+

uniformly distributed in 10 x 10 meters bounded environments.
The robots are driven by a holonomic kinematic model,
reaching a maximum speed of v,,,, = 1.0 meters per second
and have a maximum sensing range of A = 0.5 meters.
We performed 100 runs with a maximum of 20000 iterations
and analyzed the consensus speed among robots in the same
group and the persistence of the patterns. As a metric for the
persistence, we compute the number of remaining bonds and
the number of molecules formed by the swarm over time.
Here we consider a molecule as a group of robots that bonds
together and has no remaining bonds.

In the first example, we assume a swarm composed of

|7] = 2 types of robots: |79|] = 120 hydrogen-like and
|71] = 60 oxygen-like. The mass and electrical charge of the
first one is my = 1 and ||cy|| = 1, and the second one is
mo = 16 and ||co|| = 2. We define its bond constraints as

(By, BEy) = (1,1) and (BR%, BR%;) = (0,2), respec-
tively, and each type can have a maximum of BE* = 1 and
B5™ = 2 bonds allowing the swarm to form a maximum of
60 molecules. Fig. 3a shows a sequence of snapshots showing
the swarm self-organizing to form structures that resemble
water molecules. Fig. 4a shows the mean and the 99% confi-
dence interval for each of the metrics. We note that the average
velocity error in the swarm decreases and stabilizes at around
0.18 £ 0.02 meters per second. The mean error oscillations
indicate cases where the swarm detects the borders of the
environment, requiring the robots to change their velocity to
avoid collisions. Regarding the creation and persistence of the
patterns, we can see that the swarm converges to the desired
patterns. All robots are bonded (only 0.07 £ 0.05 remaining
bonds), and form the same number of groups (molecules),
59.96 £ 0.09, expected for this experiment.

In the second example, we change the oxygen-like robots
for carbon-like robots forming a swarm composed of || =
144 hydrogen-like and |71| = 36 carbon-like robots. The mass
and electrical charge of the carbon-like robots are mgo = 12
and ||cc|| = 4. We define the maximum bond constraints as
(B, Byy) = (1,1) and (BE, BR%,) = (0,4), respec-
tively, and each type allows a maximum of BE* = 1 and
BE*™ = 4 bonds allowing the swarm to form a maximum of
36 molecules. Fig. 3b shows the swarm building structures
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that resemble methane molecules. As seen in the Fig. 4b, the
swarm also reaches consensus in speed, stabilizing at around
0.21 4 0.01 meters per second, and reduces the number of
remaining bonds to 0.27 £ 0.36. Regarding the number of
molecules, we observed a variation over the iterations but
reaching an average of 35.86 + 0.18 molecules. Unlike the
previous pattern, the structures formed are more complex,
and as there is a tendency for the molecules to aggregate,
some robots may be blocked, making their bond challenging.
However, as the method is dynamic, it eventually reaches the
number of molecules expected for this experiment.

In the third example, we use |7| = 3 types of robots: |7y| =
120 hydrogen-like, |11| = 30 nitrogen-like and |2| = 30
carbon-like. The mass and electrical charge of the nitrogen-

like robots are my = 14 and ||cy|| = 3. We define max-
imum bond constraints as (BE'%, By, Biy) = (1,1,1),
( %E:XC" ]n\lf'{j?\fv %%)}I) = (1,0,3) and ( g%}a gjl}(\fa gi;l) =

(2,1,2) , respectively, and each type can have a maximum
of B =1, BY* = 3 and BE&™ = 4 bonds restricting the
swarm to form a maximum of 15 molecules. Fig. 3c shows the
swarm forming structures that resemble chemical structure of
polyamines. Fig. 4c shows that the swarm managed to stabilize
the average error in velocity (around 0.19 £ 0.01 meters per
second) and also reduced the remaining amount of bonds to
2.2040.80. As this pattern has three types of robots, different
molecules may occur, varying their quantity. However, we also
see that this number tends to stabilize near to 13.96 & 0.38,
closer to the expected value.

In the last example, we assume a swarm composed of
|70| = 130 oxygen-like and |79| = 50 carbon-like robots. We
define maximum bond constraints as (B3'%, B5%) = (1,2)
and (Bg, BES) = (0,2), respectively, and each type can
have a maximum of BF™ = 2 and BE* = 2 bonds restricting
the swarm to form a maximum of 40 molecules. Fig. 3d
shows the swarm creating structures that resemble chemical
structures of the oxocarbon. As with the previous patterns,
we observed in Fig. 4d that the swarm achieved consensus in
velocity (around 0.33 £ 0.01 meters per second) and reduced
the remaining bonds to 1.3740.74. We also observed a trend to
converge to a specific number of molecules 16.75+1.15, which
is less than the maximum expected value. Unlike the other
patterns, the rules allow the formation of larger molecules
in the form of chains, reducing the total number of small
molecules that the swarm can form.

These experiments show that the swarm is capable of
generating different patterns and dynamics depending on the
binding constraints. In the first two, the swarm produced sub-
structures that ended up aggregating. In the third experiment,
we observed the formation of more complex and also varied
structures. In the last experiment, the swarm created long-chain
forms with dynamic behavior that resemble biological systems.
These are just a few examples of patterns that our approach
can produce.

However, although the method yields a variety of patterns,
adjusting its restrictions so that the swarm forms desired
structures, such as geometric shapes, is not straightforward
without using some form of coordination mechanism. In this
sense, in the next section we show how we place robot anchors
to build and position chain like structures, which may be the
keystone for more concrete applications.
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Fig. 3: Snapshots of four simulated experiments showing
that different types of robots create different patterns resem-
bling chemical structures of the (a) water, (b) methane, (c)
polyamines and (d) oxocarbons.

B. Building chain-like structures with real robots

While we take inspiration from chemical reactions so that a
swarm can create different shapes in an emergent fashion, an
important goal is to use robot swarms for more practical ap-
plications. The chain-like oxocarbon structures created by our
method are interesting candidates because of the directionality
of the emergent patterns. In fact, structure in the form of chains
has already been investigated to form paths for foraging prob-
lems [49], [50]. Here we consider employing such behavior to
create temporary bridges that could automatically adjust their
size and shape to fit any building or terrain.

As a case study, we show through physical simulations
and real-robot experiments the application of the method to
dynamically form shapes with a topology similar to a bridge.
For this, in addition to carbon-like and oxygen-like robots,
we defined anchor robots to delimit the ends of the structure,
allowing us to control the structure’s using other algorithms
or human-swarm interaction.

We firstly set up an environment in Gazebo and imple-
mented the methodology using the ROS (Robot Operating
System) middleware. We simulated twenty HeRo Robots,
a small and affordable differential-drive robot built in our
laboratory [51], [52]. In this experiment, we distributed the
robots around the environment and placed two static robots
to delimit the beginning and end of the structure. Fig. 5
shows the simulated results, where we can see the swarm
converging on a structure that connects the two static robots.
Also, when moving the anchor robots, we can see that the
swarm reconfigures itself to maintain the structure.
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Fig. 4: Analysis of the persistence and velocity consensus for
different patterns: (a) water, (b) methane, (c) polyamines, and
(d) oxocarbons. The graphics show the mean and the 99%
confidence interval for 100 runs measuring three different
metrics. As metrics, we define the average velocity error for
each group of robots, the number of remaining bonds, and
molecules formed by the swarm in up to 20000 iterations.

We could also observe a similar behavior in proof-of-
concept experiments with real robots, as shown in Fig. 6. We
used five HeRo robots remotely controlled by ROS and with
local sensors emulated using images from an overhead camera.
To control the robots to follow the velocity, we use the method
described by Sordalen et al. [53]. The two black blocks in the
image play the role of the anchor robots. The robots are able
to form a chain-like structure and dynamically adapt its shape
as we move the anchors.

V. CONCLUSION AND FUTURE WORK

This paper presented a novel decentralized approach that
allows a swarm of heterogeneous robots to form different
patterns and shapes in an emergent fashion. Inspired by
chemistry’s Octet rule, we developed a mechanism to de-
termine possible bindings among robots and improved our
stochastic methodology based on Gibbs Random Fields to
control the swarm. Experiments using numerical simulations

demonstrated the versatility of our approach in producing dif-
ferent patterns by setting only the maximum bond constraints.
Moreover, we presented physical simulations and real-robot
experiments in which a swarm was capable of building a chain-
like structure, which is potentially attractive for more tangible
applications.

As future work, we intend to tackle the problem of which
compounds are required to generate a given shape. Find-
ing such a correlation for producing complex shapes is not
straightforward, so we plan to study strategies to define the
binding constraints using reinforcement learning and dynam-
ically change these constraints during execution to produce
specific shapes. We also want to investigate the possible use of
human-swarm interaction to allow the robots to dynamically
create shapes on demand, which may be useful in different
applications.
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