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Abstract— This paper presents a novel methodology that al-
lows a swarm of robots to perform a cooperative transportation
task. Our approach consists of modeling the swarm as a Gibbs
Random Field (GRF), taking advantage of this framework’s
locality properties. By setting appropriate potential functions,
robots can dynamically navigate, form groups, and perform co-
operative transportation in a completely decentralized fashion.
Moreover, these behaviors emerge from the local interactions
without the need for explicit communication or coordination. To
evaluate our methodology, we perform a series of simulations
and proof-of-concept experiments in different scenarios. Our
results show that the method is scalable, adaptable, and robust
to failures and changes in the environment.

I. INTRODUCTION

Robotic swarms are composed of a large number of
robots that generally rely on emergent collective behaviors
to solve complex problems. Such systems present desirable
characteristics, such as robustness, adaptability, simplicity,
and scalability, which are important in different tasks [1], [2].

In particular, robotic swarms capable of cooperatively
transporting objects may be suitable for many applications
with high societal and economic impact potential. For in-
stance, one may use robotic swarms for operations where the
use of sophisticated robots is impossible or impractical, such
as warehouse automation, waste disposal, and demining.

Despite several advantages of using robotic swarms robots
for cooperative transportation, designing decentralized con-
trol methods for such application is not simple. Some of
the main challenges consist of aligning and synchronizing
the forces applied to sustain the transportation. The method
must be robust to objects of different shapes and resilient to
changes in the environment, such as surfaces with different
coefficients of friction, and robot failures.

This work presents a novel stochastic and decentralized
approach that allows a swarm of robots to navigate au-
tonomously through a bounded environment and coopera-
tively transport an object toward its goal location, as shown in
Fig. 1. Our approach consists of modeling the robotic swarm
as a Gibbs Random Field (GRF) and defining its potential
energy as a combination of the Coulomb-Buckingham poten-
tial and kinetic energy. The Coulomb-Buckingham potential
enables the robots to aggregate, interact with the object by
pushing it, and avoid obstacles in the environment. The
kinetic energy allows the robots to reach a consensus on
their relative velocities concerning their neighborhood and
circulate the object looking for adequate pushing positions.
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Fig. 1: Swarm of robots cooperatively transporting an object
(solid cardboard) toward a goal (transparent cardboard).

Dynamically and autonomously adapting the potential and
energy parameters, robots can navigate through the environ-
ment looking for the object to be transported, form groups,
and push the object toward a goal location. These behaviors
emerge from the local interactions without the need for
explicit communication or coordination. The robots only
need to be able to estimate the relative position and velocity
of their neighbors and also distinguish between obstacles and
the object detected within their sensing range. Moreover, the
robots do not need any information about the object (i.e.,
location, size, mass, and shape), except for its goal location.

II. RELATED WORK

Over the years, a wide range of control and coordination
methods have been proposed to perform cooperative object
transportation using multiple robots. Recently, Tuci et al. [8]
presented a review of the state-of-the-art works in this area,
which categorizes the most common transportation strategies
into three types: pushing, caging, and grasping.

Pushing strategies, such as those used in this work, con-
sider that the robots are not attached to the object. They
provide a simple way of manipulating relatively large objects
and do not require any sophisticated mechanism to apply
forces to the object. Pushing is also interesting because,
unlike other strategies, it allows robots to aggregate and
apply forces to specific points on the object, enabling the
transportation of large and heavy objects when the number
of robots is increased. Moreover, it allows the use of simpler
robots, providing a suitable scenario for robotic swarms.

While there is a large body of work in cooperative object
transport [8], we focus our discussion on approaches that
do not require centralized planners or direct communication
among robots to push an object from a random location to
a specific goal. Table I summarizes the main characteristics
of these approaches, and in the following, we review and
compare these works with ours, mainly discussing scala-
bility, adaptability, and robustness issues. By adaptability,



TABLE I: Main characteristics of research works using pushing-only transport strategy.

Studies Control method Experimental setup Scalability Adaptability test Robustness test

Number of
robots

Env. with
obstacles

Transport
direction

Random
position

Robot
failure

Change in the
environment

Object
mass

Object
shape

Object
size

Kube and Bonabeau, 2000 [3] Behavior-based 2-20 no towards a goal no high no no no no yes
Yamada and Saito, 2001 [4] Behavior-based 4 no towards a goal no low yes yes no no no
Fujisawa et al., 2013 [5] Behavior-based 4-10 no towards a goal yes high yes yes yes no no
Jianing Chen et al., 2015 [6] Behavior-based 20 yes towards a goal yes high no no yes yes yes
Alkilabi et al., 2018 [7] Neural Networks 2-6 no towards a goal no high no no yes no yes
Ours GRFs 2-20 yes towards a goal yes high yes yes yes yes yes

we consider the team’s ability to work reliably even with
individual robot failures or changes in the environment, while
robustness is related to the power of the methodology to deal
with objects of different mass, size, or shape.

Kube et al. [9] presented one of the first studies that
formally dealt with the dynamics of cooperative transport.
The authors demonstrated that coordinated efforts produced
by a homogeneous group of simple robots pushing an
object are possible without using a direct communication
mechanism. Further, in Kube and Zhang [10], the authors
extended the original work by constructing a new robot
for experimentation. Also, In Kube and Bonabeau [3], they
proposed the addition of a stagnation recovery strategy
avoiding deadlock conditions in which the robots cancel the
pushing forces on the object depending on where they are
positioned around it. Moreover, they extended their approach,
allowing the robots to push the object towards a fixed goal
position and performed experiments to test their method’s
robustness and scalability.

Yamada and Saito [4] also presented theoretical and ex-
perimental analyses to support the assumption that robots
can transport objects without using direct communication.
Unlike previous works, the authors demonstrated that the
use of indirect communication also allows the transport of
an object towards a goal location considering a dynamic
environment. Their approach consists of using an action
selection method to design a behavior-based control method
that is robust to a small change in the environment, such
as increase the number of robots or the mass of the object.
To evaluate the performance of their approach, the authors
executed real experiments using four robots showing that the
robots can operate in a simple environment where individual
robots are required to push a light object or in complex
environments where multiple robots are required to push a
heavy object cooperatively. Although their approach allows
adaptability to small changes in the environment, the authors
did not evaluate the robustness of the method to objects with
different shapes, mass, and sizes. Furthermore, the method
does not seem to scale easily as the system grows.

Fujisawa et al., 2013 [5] presented a cooperative transport
approach that uses an interesting mechanism for indirect
communication via artificial pheromones as seen in ants.
Such a mechanism allows the robots to sense and lay on the
terrain a volatile alcohol substance, mimicking pheromone
during trail formation. The authors also proposed a behavior-
based algorithm using a deterministic finite automaton,
which allows the robots to perform a random search to find
a food item (i.e., a heavy object) and transport it to a goal
location (i.e., the nest). To evaluate the efficiency of the

proposed system, they perform experiments with up to 10
robots demonstrating the adaptability of their approach but
did not evaluate the system’s scalability and the robustness
of the method as to the object’s shape and size changes.

Jianing Chen et al. [6] proposed another behavior-based
strategy for cooperative transport that deals with goal occlu-
sion by keeping the robots pushing the object even when
not detecting the goal. They performed experiments using
twenty robots to transport objects of different shapes toward
their goals and provided analytical proof of the method’s ef-
fectiveness. Also, the authors demonstrated other interesting
experiments in which they consider the goal location as a mo-
bile robot remotely controlled by a human, showing potential
applications in the context of human-robot interaction. The
work was further extended with this focus in Kapellmann-
Zafra et al. [11]. Although the authors demonstrated the
system’s scalability and robustness to different types of
objects, tests evaluating the adaptability of the system to
failures or changes in the environment were not performed.

Differently from previous approaches, Alkilabi et al. [12]
proposed an approach based on recurrent neural networks
and evolutionary algorithms, which allow a group of robots
with a minimalist sensory apparatus to transport a heavy
object by perceiving its movement. The best instance of
the evolved controller was extensively tested on physical
robots to transport objects of different sizes and masses in an
arbitrary direction. Later on, Alkilabi et al. [7] presented a
complementary study extending their neural-controller with
mechanisms to direct the transport towards a specific target
location. The authors showed that the transport strategies are
scalable concerning the group size and robust enough to deal
with boxes of various masses and sizes. Despite presenting
interesting results in a large set of experiments, the strategy
still requires robots to start with a direct view of the object.
Also, it does not consider objects with different shapes or
obstacles in the environment.

This paper presents an approach that allows a swarm of
robots to coordinate their motion to navigate a bounded
environment and cooperatively transport an object toward
its goal location. We model the swarm as a Gibbs Random
Fields (GRF) and take advantage of this framework’s prop-
erties to control the robots in a completely decentralized
fashion, relying only on local information. Different from
other methods, we do not require pre-synthesized behaviors
or automatic learning methods. Using appropriate potential
functions, the desired behaviors emerge directly from local
interactions, bringing scalability, robustness, and adaptability
to our method.



III. METHODOLOGY

The proposed approach is based on our recent work [13] in
which we proposed and evaluated a novel methodology that
allows a swarm of heterogeneous robots to simultaneously
achieve flocking and segregative behaviors. Here, we adapt
and extend this methodology allowing a swarm of robots
to cohesively navigate through a bounded environment and
cooperatively transport an object toward its goal location.

The main idea behind our approach consists of modeling
the swarm as a dynamic Gibbs Random Field (GRF) and
then sampling velocities for each robot in a decentralized
way, which leads the entire swarm to converge toward the
global minimum of the potential. Thus, setting the potential
functions accordingly, we can make the swarm execute the
desired task in a completely decentralized fashion.

A. Formalization

Assume a set R of η homogeneous robots navigating
through a bounded region within the two-dimensional Eu-
clidean space. The state of the i-th robot at time step t

is represented by its pose q
(t)
i and velocity q̇i

(t) = v
(t)
i ,

which is bounded by ||v(t)
i || ≤ vmax. The robots are driven

by a kinematic model with motion model defined as
K : (q

(t)
i ,v

(t)
i )→ (q

(t+1)
i ) and have a circular sensing range

of radius λ, enabling them to estimate the relative position
and velocity of other robots as well as objects and obstacles
within this range.

We represent an object as a finite set of points
O = {o1, ...,on} outlining the object perimeter. An ob-
ject detected by the i-th robot within its circular sensing
range consists of a subset of points Oi ⊂ O, where
oj ∈ Oi → ||oj − qi|| ≤ λ and ||oj − qi|| is the Euclidean
norm between two points. The robot represents obstacles
in the same way as the object. Thus, we require the i-th
robot to be able to arrange the points detected on objects
and obstacles at time t into two distinct sets, O(t)

i and W(t)
i ,

respectively. In addition, we assume that the robots can track
the goal location, g, of object O from any point within the
environment.

B. Applying GRFs concepts to swarm robotics

A GRF is a probabilistic graphical model that is a partic-
ular case of a Markov Random Field (MRF) when the joint
probability density of the random variables is represented
by the Gibbs Measure [14]. Such models are conditioned
by the Markov properties [15], which are convenient to
model robotic swarms. Such properties imply the condi-
tional independence of information coming from outside a
neighborhood system, supporting the requirement of local
interactions.

1) Modeling a swarm of robots: assume an undirected
graph G = (R,E) with each vertex representing one of the
robots. A random field on G consists of a collection of
random variables X = {Xi}i∈R and, for each i ∈ R, let
Λi be a finite set called the phase space for the i-th robot.
A configuration of the system X at time step t is defined
as x(t) = {v1, ...,vη}, where vi ∈ Λi and represents the
velocities performed by each robot at that time step.

A neighborhood system on R, given a configuration
x(t), is a family N = {Ni}i∈R, where Ni ⊂ R is
the set of neighbors for the i-th robot. The neighbor-
hood is constrained by the sensing range λ satisfying
Ni , {j ∈ R : j 6= i, ||qj − qi|| ≤ λ}, and induces the con-
figuration of the graph G by setting an edge between two
robots if they are neighbors.

A random field X is called a GRF if the joint probability
density of the system is represented by,

P (X = x) =
1

Z
e−

H(x)
T , with Z =

∑
z

e−
H(z)
T , (1)

where Z is a normalizing term; T is a constant interpreted as
the temperature in the statistical physics context and taken
as equal to 1 in this paper; 1

Z e
−H(x)

T is called the Gibbs
distribution; and H(x) is the potential energy of the system.

In short, the distribution function (1) establishes that the
probability of the random field X assuming state x is
proportional to the potential energy of such a state divided
by the sum of the potential energy relative to all states z that
the field can assume. It implies that the low energy states are
more likely than those of higher energy.

The potential energy H(x) consists of the summation
of values produced by potential functions, UA : Λ → R,
which quantifies the state x of the swarm system concerning
a physical property or behavior. Formally, it is defined by
pairwise interactions between neighboring vertices as

H(x) =
∑
i∈R

U{i}(vi) +
∑

(i,j)∈R×R,j∈Ni

U{i,j}(vi,vj), (2)

where U{i}(vi) is interpreted as the potential for the i-th
robot to reach the velocity vi, and U{i,j}(vi,vj) is the
potential regarding the velocities of the neighboring (vi,vj)
pair of vertices.

2) Parallel Gibbs sampling: the probability function (1)
enables one to compute the probability of the entire swarm
reaching a certain configuration x. However, what we require
is the sampling of each robots' velocity in a decentralized
way, given only the neighborhood of the robots.

Parallel Gibbs sampling is a strategy that simultaneously
updates the robots' velocities based on their configuration at
time t. Such strategy is possible due to the local nature of
the potential energy (2), and it implies that we do not require
the knowledge of the entire swarm to sample velocities for
the i-th robot, but only information about its Ni neighbors.
Indeed, by replacing (2) in (1), we obtain

Pi(vi, v̄i|x) =
e
−
(
U{i}(v̄i)+

∑
∀j∈Ni

U{i,j}(v̄i,vj)

)

∑
zi∈Zi(x)

e
−
(
U{i}(zi)+

∑
∀j∈Ni

U{i,j}(zi,vj)

) ,

(3)
where Zi(x) , {zi : ||zi|| ≤ vmax} is a set of possible
velocities for the i-th robot given the configuration x(t),
restricted by Zi(x) ⊂ Λi; and v̄i is a velocity sampled in
Zi(x) representing a likely velocity for the next time step,
vi

(t+1) = v̄i.



Fig. 2: The Coulomb-Buckingham potential function de-
pends on the distance r among two particles i and j and
their charge ci and cj . We set the charge to produce attractive
behavior among the robots and with the object, or repulsive
behaviors to avoid collision with obstacles [13].

We use (3) to sample appropriate velocities for each robot
using only the current state and information about their
neighborhood. A common approach to sampling velocities
given the probability function (3) consists of using Markov
Chain Monte Carlo (MCMC) methods. In this work, we use
the Metropolis-Hastings algorithm [16].

3) Swarm behaviors and potential functions: one of the
many advantages of modeling a robotic swarm as a GRF
is the flexibility to implement different swarm behaviors,
changing only the potential functions used by the potential
energy (2). We extend the definition of the potential U{i}(vi)
to allow the robots to interact with objects as well as to
avoid collisions with obstacles within the environment. Also,
the potential U{i,j}(vi,vj) is used to maintain the robots
cohesively navigating through the environment. For this, we
use the Coulomb-Buckingham potential in conjunction with
a kinetic energy term.

The Coulomb-Buckingham potential [17] is a combination
of the Lennard-Jones potential with the Coulomb potential.
It describes the interaction among particles considering the
distance between them and their charges. We take advantage
of such a potential to model the cohesion among the robots
as well as their interaction with objects and obstacles. Fig. 2
illustrates the Coulomb-Buckingham potential, given by:

Φ(r) = ε

(
6

α− 6
eα
(

1− r

r0

)
− α

α− 6

(r0
r

)6)
+

cicj
4πε0r

,

(4)
where r = ||qj − qi|| is the euclidean distance between the
particles i and j; ε is a constant representing the depth of
the minimum energy; r0 is the minimum energy distance; α
is a free dimensionless parameter; ci and cj are the charges
of the particles i and j; and ε0 is an electric constant.

We assume classical mechanics to compute the kinetic
energy regarding the robots and object motion. Kinetic
energy allows the robots to maintain a consensus on their
velocities while navigating as a group and also to move
around the object. Formally, assume V as the sum of the
velocity vectors and m is the mass of the system. The kinetic
energy E is defined as

E(V) =
1

2
m(V ·V). (5)

Fig. 3 presents a diagram illustrating how the de-
sired behaviors emerge from the combination of Coulomb-
Buckingham potential and kinetic energy. These behaviors
are detailed in the next sections.

C. Cooperative transport
For the cooperative transportation task, we design the po-

tential U{i}(vi) to simultaneously generate the move around
and pushing behaviors. The pushing behavior comes directly
from the Coulomb-Buckingham potential, and the move
around comes from the combination of such potential with
the kinetic energy. We note that increasing or decreasing the
Coulomb-Buckingham potential implies favoring the pushing
or moving around behavior. Thus, we propose a conditional
factor: if the robot is in a position where it can push the
object towards its goal, the robot increases the Coulomb-
Buckingham potential. Otherwise, it decreases.

The Move Around Behavior comes from the combination
of the Coulomb-Buckingham potential with the kinetic en-
ergy. The first one forces the robots to stay at a certain
distance, δ, from the object avoiding missing or colliding
with it. We set r0 = δ and cicj < 0 in (4). The second one
indicates which velocity favors circumvent the object. The
strategy for moving around consists of computing a gradient
of the points detected on the surface of the object and using
it to sample velocities that favor the robot to move around
the object.

To compute the gradient, we arrange the points detected
by the i-th robot on the O(t)

i object on a clockwise or
counterclockwise order. To decide in which order, we project
a line segment (“front segment” shown in Fig. 4) and count
the number of points to the left and to the right of that line
segment. If there are more points to the left than right, we
order clockwise; otherwise, we order them counterclockwise.
This forces the robots to choose velocities that align them
with the surface of the object. For now on, assume Ō(t)

i is
the ordered set of points detected on the object.

Defining the order of the elements directly implies on the
direction of the gradient, which in turn indicates the direction
that the robot should move around the object. Given Ō(t)

i ,
the gradient is calculated as,

∇(t)
i = ∇Ō(t)

i = {oi+1 − oi : |Ō(t)
i | ≥ 2}, (6)

where ∇(t)
i is a simplified notation and consists of a set with

each element being a vector on the surface of the object.
To evaluate how much the velocity performed by the robot

favors the move around behavior, we sum the differences
between the gradient vectors and the robot velocity. That is,
we compute the resulting vector,

Qi =
∑

∀υj∈∇(t)
i

υj − v̄i, (7)

where v̄i is a sampled velocity for the i-th robot and Qi is a
vector that summarizes the mismatching among the sampled
velocity and the gradient.

On the other hand, the Pushing Behavior is achieved
simply by decreasing the δ distance applied to the Coulomb-
Buckingham potential. This forces the robots to collide
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Fig. 3: Diagram showing how the swarm behaviors emerge from the combination of the potential functions.
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Fig. 4: Illustrative scheme showing the perception of the
robot regarding the object and its goal.

with the object producing the pushing behavior. To achieve
this behavior automatically, we use a similar mechanism
presented previously to divide the points detected to the left
or the right side regarding a line segment in the goal direction
(shown as a blue arrow in Fig. 4). If there are points on
both sides, the object is occluding the goal from the robot;
otherwise, the robot has a direct line of sight to the goal. The
robot decides to start pushing the object if there are points on
both sides and the proportion of points from one side to the
other is higher than a threshold ρ. To start pushing the object,
the robot must decrease the δ distance such that it collides
with the object. If such a proportion is lower than ρ, then it
increases the δ distance so that the robots can circulate the
object.

D. Obstacle avoidance

To avoid collisions with obstacles, we extend the potential
U{i}(vi) with another Coulomb-Buckingham potential. To
compute such potential, we use distance r between the points
detected on the surface of obstacles and the robot's pose. By
setting the charges in (4) to (cicj > 0), we note that the
robots generate a repulsive behavior to obstacles avoiding
collisions with them.

E. Cohesive motion

To cohesively navigate the swarm through the environ-
ment, we combine the Coulomb-Buckingham potential and
the kinetic energy (see Fig. 3). The first one forces the robots
to aggregate, while the second one drives the robots to reach
a consensus on the group's velocity.

To keep the cohesion of the swarm, we set the charges
in (4) to (cicj < 0) and use the relative distances between
the robot and its neighbors.

The velocity consensus is reached by computing the
kinetic energy from the relative velocities of the i-th robot
neighbors. That is,

Vi =
∑
∀vj∈Ni

vj , (8)

where Vi is defined as the sum of the relative velocities.

F. Combination

Formally, all the swarm behaviors described above and
illustrated in Fig. 3 are represented by the potential energy

Hi(x) =

 ∑
∀oj∈Oi

Φ(||q̄− oj||) + E(Qi) +
∑

∀wj∈Wi

Φ(||q̄−wj||)

+

 ∑
∀vj∈Ni

Φ(||q̄−K(qj ,vj)||) + E(Vi) + E(vmax − v̄i)

 ,

(9)
where Hi(x) is the potential energy associated with the i-
th robot concerning state x and a sampled velocity v̄i. The
first term in parenthesis defines, respectively, the cooperative
transport and obstacle avoidance behaviors. The second one
is related to the coordinated motion.

IV. EXPERIMENTS AND RESULTS

We conduct several simulated experiments to evaluate our
approach’s performance regarding scalability, adaptability,
and robustness. For this, we implemented our methodology
using the ROS (Robot Operating System)1 middleware and
set up a simulated environment in Gazebo2. The simulated
environment consists of a 4 by 4 meters arena, an object, and
a group of differential drive robots. The simulated robots are
a model of a physical robot that we are developing in our
laboratory for experiments with swarm robotics [18]. It is
equipped with a range sensor consisting of a set of infrared
beams with λ = 0.5 meters. We consider that this sensor can
distinguish between objects and obstacles. As mentioned, we
also consider that robots can estimate neighbors’ positions
and velocities. The maximum speed reached by these robots
is 0.12 m/s. The simulator’s physics engine allows a single
robot to start the movement of a 200 grams object if it
collides with it at speeds above 0.10 m/s. It also allows it
to keep pushing the object if it maintains a speed greater
than 0.01 m/s. For each experiment, we performed 30 runs

1https://www.ros.org
2http://gazebosim.org

https://www.ros.org
http://gazebosim.org


(a) t = 0 s (b) t = 338 s (c) t = 485 s

(d) t = 642 s (e) t = 805 s (f) t = 919 s

Fig. 5: Snapshots of an experiment showing 10 simulated robots transporting an object toward a sequence of goal locations
in a complex environment.

(a) t = 0 s. (b) t = 65 s. (c) t = 146 s. (d) t = 307 s.

Fig. 6: Snapshots of an experiment showing 5 e-puck robots transporting an object toward its goal. The red rectangle indicates
the goal location.

and, for each run, the robots are randomly placed in the
environment. The results are presented as an average value
with a 95% confidence interval. A video of the experiments
is available on Youtube3 and the source code at Github4.

A. Scalability
To evaluate the system scalability, we performed exper-

iments increasing the number of robots: 2, 4, 10, 20. A
rectangular object of 0.5 by 0.4 meters and mass equal to
200 grams was placed in the center of the arena and the
goal is located 1.7 meters ahead. As metrics, we measure
the velocity and current distance between the object and its
goal location. We assume the robots stop pushing the object
if it is less that 0.1 meters of its goal. Fig. 7 shows the results
from this experiment and Table II summarizes the average
time spent by the robots to transport the object to its goal.

As expected, increasing the number of robots reduces
the time taken to find and transport the object to the goal
location. With more robots searching, the time taken to find
the object is smaller. Moreover, the object reaches higher
speeds when pushed by more robots, also reducing the
transport time.

However, we also observe that the gain is smaller for a
large number of robots. For example, the gain of increasing

3https://youtu.be/hrkJKL3W3pQ
4https://github.com/rezeck/grf_transport

from 2 to 4 robots is larger than from 10 to 20. When there
are too many robots trying to push the object, the most
distant ones cannot detect it due to sensing restrictions and
will not contribute to the pushing. Thus, while our approach
is scalable, the performance will depend on the size of the
object and robots’ sensing capabilities, and it may saturate
for a large number of robots.

Fig. 7: Experiments on the scalability of the system when
increasing the number of robots.

https://youtu.be/hrkJKL3W3pQ
https://github.com/rezeck/grf_transport


TABLE II: Average transportation time for 30 trials when
the number of robots increases.

Number of robots Transport time (seconds)

2 829± 74
4 593± 96
10 324± 18
20 278± 14

TABLE III: Average transportation time for 30 trials when
the robots need to adapt to changes in the environment.

Scenario Transport time (seconds)

Ideal 438± 13
Robot failure 596± 21
Goal change 449± 11

B. Adaptability
We propose two experiments to determine whether our

approach allows the swarm to adapt to robot failures and
changes in the environment. We use 10 robots in these
experiments, and we move a rectangular object of 0.5 by
0.4 meters with a mass equal to 200 grams toward its goal,
located 2.6 meters apart. Unlike the previous setup, we place
the object such that it requires the robots to push it around
corners.

In the first experiment, we assume that 4 robots stop
working due to mechanical failures when they are pushing
the object. We intend to evaluate the method’s resilience
when the number of robots performing the task abruptly
decreases. Also, this experiment allows us to assess the
robots’ resilience to execute the task. Fig. 8 shows the
average velocity and distance of the object from its goal.
Table III summarizes the average time spent by the robots
to transport the object.

In Fig. 8, we may observe that robot failures impact the du-
ration of the task. Besides the impact of having fewer robots
pushing the object, we noticed that in many runs, the “dead”
robots obstructed the others and were also pushed together
with the object, decreasing the object velocity. Despite that,
we noticed that the swarm managed to successfully transport
the object in all attempts.

In the second experiment, we evaluate how the swarm
behaves when the goal location is changed. To assess this,
we changed the goal when the object is less than 1.3 meters
from its goal. We set the new goal location to 1.3 meters in
the other direction so that the robots need to move around
the object to continue the transport. The total distance with
the change of the goal is 2.6 meters. In spite of that, Figure 8
shows that the robots are able to complete the task, and the
time taken does not increase significantly, demonstrating the
adaptability of the method.

C. Robustness
We conducted experiments with three objects of different

shapes, sizes, and masses to assess the robustness of the
method. To evaluate how robots behave when they detect
objects with differently shaped corners, we used three ob-
jects: a rectangular prism (right angle), an octagonal prism

Fig. 8: Experiments on the adaptability of the swarm when
robot failure occurs and when the goal location changes.

(obtuse angle), and a triangular prism (acute angle). For each
object, we experiment the effects of doubling their sizes and
masses. In all experiments, we placed the object at a distance
of 2.6 meters from its goal. Fig. 9 shows the time required
to transport the objects to the goal.

In this experiment, the robots were less efficient in pushing
the triangular prism than the other two objects. When the
robots start pushing the triangle at its acute corners, few
robots are grouped to push, increasing the task time. As
expected, increasing the mass of the object also increases the
transport time. Although larger objects enable more robots
to push it, they also cause an overall increase in transport
time. Increasing the effective contact surface between the
object and the ground increases the maximum intensity of
the friction force, making the object more difficult for the
robots to push. When we increase the size of the triangular
prism, we observe that its impact over the transport time is
relatively higher than increasing either the rectangular or the
octagonal prism. We believe that objects with sharp corners
decrease our method’s performance since we assume our
sensor to be radial, making detection difficult when the robot
is pushing on a corner. Despite the disparity in the transport
time for different objects, the robots successfully transported
all objects to their goals.

D. Object transportation in complex environments

In more complex environments, pushing an object toward
its goal location may be challenging due to obstructions
caused by obstacles. Navigation strategies can help robots
to move an object to its final location, passing through a
series of waypoints.

Since our method allows robots to adapt to the change in
goal location, we conducted experiments where the robots
transport an object through a sequence of goals. We assume
the robots are initially distributed around the environment,
do not know the object’s location, but have the sequence
of waypoints beforehand. Fig. 5 displays a sequence of
snapshots from one experiment and a video5 is also available.

5https://youtu.be/a0eYZid3jQs

https://youtu.be/a0eYZid3jQs


Fig. 9: Experiments on the robustness of the swarm regarding
different objects with different sizes and masses.

E. Real robots

We also conducted proof-of-concept experiments to assess
the applicability of our approach in a real environment.
The environment consists of a bounded square area of 2
by 2 meters, an object of 0.14 by 0.48 meters that weighs
550 grams, and five e-puck robots [19]. The robots receive
velocity commands from a remote server executing ROS,
where each one of them is implemented as an independent
node. Given that our robots are not equipped with sensors
that enable them to process our method, we emulate such
sensors using the information provided by an Optitrack
motion capture system6. We set the sensing distance to
λ = 0.3 and set the goal location 1.1 meters ahead of the
object.

We performed 10 runs with a duration of 10 minutes each.
As we expected, the robots were able to transport the object
in all attempts, showing that the method is effective even
with the uncertainties found in real scenarios. Overall, the
robots took 448 ± 8 seconds to transport the object. Fig. 6
presents a sequence of snapshots from one experiment and
a video7 is also available.

V. CONCLUSION AND FUTURE WORK

This paper presented a novel approach based on Gibbs
Random Fields that allows a swarm of robots to navigate
through an environment and cooperatively transport an object
toward its goal location. The approach is fully decentralized
and based on local information, being suitable for robotic
swarms. To assess the scalability, adaptability, and robust-
ness of our method, we conducted several experiments in
different scenarios. Results showed that our method is scal-
able and supports the transportation of objects of different
shapes, sizes, and masses. Moreover, it exhibited resilience to
changes in goal location and robot failures. Proof-of-concept
experiments using real robots showed the feasibility of our
approach in a real-world environment. By setting a sequence
of goals, we further demonstrated our method’s application in
more complex environments, where the robots push an object

6http://optitrack.com
7https://youtu.be/1I9-hTQO8CU

through an environment with obstacles. In future work, we
intend to explore heterogeneity to allow part of the group to
take responsibility for finding the goal location and indicating
it to other robots in charge of transporting the object. Also,
we plan to experimentally compare our work with others in
the literature and investigate ways to allow our method to
adjust the object’s orientation regarding its goal.
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