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Abstract— This paper presents a novel approach that allows
a swarm of heterogeneous robots to produce simultaneously
segregative and flocking behaviors using only local sensing.
These behaviors have been widely studied in swarm robotics
and their combination allows the execution of several complex
tasks. Our approach consists of modeling the swarm as a Gibbs
Random Field (GRF) and using appropriate potential functions
to reach segregation, cohesion and consensus on the velocity
of the swarm. Simulations and proof-of-concept experiments
using real robots are presented to evaluate the performance of
our methodology in comparison to some of the state-of-the-art
works that tackle segregative behaviors.

I. INTRODUCTION

Due to the advances in technology that have enabled the
mass production of increasingly smaller robots [1], control
methods that yield desired collective behaviors using simple
local interactions have received much interest in recent years.
Inspired by the emergent behaviors commonly observed in
nature, one of the main goals of swarm robotics is to develop
such methods in a decentralized and scalable fashion, mainly
relying on local sensing and communication capabilities.

In this sense, one of the most fundamental mechanisms a
robot swarm must exhibit is the ability of group formation
and cohesive navigation [2]. Segregation is a particular type
of group formation in which robots with common character-
istics are placed together and set apart from other groups [3].
Several applications can benefit from using these behaviors,
such as area coverage, surveillance and reconnaissance,
transport, foraging, among others.

This work presents a novel stochastic and decentralized
approach that allows a swarm of heterogeneous robots to
achieve simultaneously segregation and flocking behaviors
using only local sensing. To the best of our knowledge, this
is the first work to tackle these behaviors together starting
from a random initial state and using only local information.
Our approach consists of modeling the robot swarm as a
Gibbs Random Field (GRF) defining its potential energy as
a combination of Coulomb-Buckingham potential and kinetic
energy. Such concepts have been extensively used in statis-
tical mechanics and quantum mechanics to model particle
interactions, but we revisit them in the swarm robotics
context. As a consequence of using GRF and such potentials,
besides supporting the segregation and navigation of different
groups avoiding collision with obstacles, the approach allows
the swarm to reach configurations sufficiently close to the
global minimum energy.

Using simulated experiments, we contrast the method-
ology with a deterministic gradient descent-type algorithm
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using potential differentials showing that such mechanism is
easily trapped at local minima of potential. In addition, we
compare our segregative behavior with some of the state-of-
the-art approaches and evaluate the flocking behavior in the
presence of noise. Real experiments were also performed as
a proof-of-concept for our GRF approach.

II. RELATED WORK

Most works in swarm robotics usually focus on homo-
geneous systems, in which all robots have the same char-
acteristics [4]. However, in recent years, there is a growing
interest in heterogeneous systems. As a consequence, new
types of swarming behaviors have been investigated, such as
segregation. One of the first works to deal with this problem
was proposed by Groß et al. [5]. The authors presented a
control algorithm inspired by a collective phenomenon in
which segregation occurs by constantly shaking a mixture of
different sizes particles (Brazil Nut effect). This study was
later extended by Chen et al. [6] and Joshi et al. [7], when
they evaluated and improved performance and presented
experiments with real robots.

Another approach to segregate a swarm of heterogeneous
robots was presented by Kumar et al. [8]. The authors
took inspiration from a biological theory that explains how
differences in cell adhesion generate mechanical forces that
drive cellular segregation (Differential Adhesion Hypoth-
esis) [9]. This mechanism is modeled with the concept
of differential potential, in which robots are subjected to
differential artificial potential fields according to their groups.
The method’s convergence is guaranteed for two classes,
but the swarm may be trapped in local minima when more
classes are employed. This approach was later extended in
Santos et al. [3], [10] to deal with more than two groups
of robots. One limitation is the requirement that robots must
have global knowledge about the positions of other robots.

Motivated by the use of differential artificial potential
fields, Ferreira Filho and Pimenta [11] proposed a novel
controller that differs from the previous ones by using
abstractions [12] to represent each group. One advantage of
such a controller is that it may not require that all robots
receive information from all other robots all the time. More
recently, the authors extended this controller to incorporate
a collision avoidance scheme that does not interfere with the
original segregation controller [13]. In a different work [14],
they presented a decentralized control strategy to segregate
heterogeneous robot swarms distributed in curves using
consensus protocols and heuristics to compute the traveled
geodesic distances on curves. This approach assumes that
robots know the curve and maintain an underlying fixed
communication topology.



Recently, two works assuming minimal and local-only
requirements for segregating a swarm of heterogeneous
robots have been proposed. Mitrano et al. [15] extended the
concept of a minimalistic reactive controller [16] to achieve
segregation. They demonstrate that robots with only a ternary
sensor and a controller that maps sensor readings to wheel
speeds can reach a segregated state. Also, considering local
sensing and a memory mechanism supported by communi-
cation, Inácio et al. [17] proposed a strategy that combines
concepts of Particle Swarm Optimization (PSO) [18] with
the Optimal Reciprocal Collision Avoidance (ORCA) [19]
to archive segregation.

Following the works that rely only on local information,
we assume that our robots only use their neighbors’ relative
position and velocities to achieve simultaneous segregation
and cohesive navigation. However, most of these works
only consider collisions with other robots. Our method also
allows the robots to avoid collisions with obstacles in the
environment, considering that they are equipped with range
sensors, such as infrared sensors.

Besides dealing with the segregation problem, our ap-
proach also generates a cohesive navigation behavior for the
different groups of robots. One of the main challenges in
achieving such behavior is reaching a consensus on each
part of the group’s velocity as its size increases. In addition
to that, the groups must remain segregated while navigating.

One of the earliest and most influential approaches to steer
a swarm of homogeneous agents using only local interactions
was proposed by Reynolds [20]. This mechanism, called
boids, combines three simple rules: separation, cohesion, and
alignment. While most works on this subject deal with ho-
mogeneous groups, some use heterogeneous robotic swarms
to study the flocking of distinct groups. Momen et al. [21]
extended the flocking mechanism with heterospecific attrac-
tion rules [22] to model different attraction forces between
two groups of robots, producing a mixed-species flocking.
Ducatelle et al. [23] proposed a mechanism that emerges
cooperative self-organized behaviors to solve complex tasks
using simple local interactions between the robots of the two
different groups. Another study on self-organized flocking
explored the concept of Swarm heterogeneity in the sense
that robots with more capabilities help others that lack some
capabilities in order to yield the desired behavior [24].

Some works tackle the problem of segregated navigation,
in which the robots start in a segregated state and have
to maintain the segregation during navigation. For example,
Santos et al. [25] introduces a novel concept called Virtual
Group Velocity Obstacles that combines the concepts of
flocking [20] and Velocity Obstacles [26] with abstractions
to represent the groups. To improve performance over such
approach, Inácio et al. [27] proposed the combination of the
Optimal Reciprocal Collision Avoidance algorithm [28] with
the concepts of flocking.

Different from these works, our approach simultaneously
generates segregation and flocking behaviors. The robots
start in a completely random state and, as they move around,
they segregate into different groups and keep this segregation
while navigating. To the best of our knowledge, this work is

the first to present a fully decentralized stochastic controller
that performs both behaviors using only local interactions.

Moreover, although our approach produces flocking be-
haviors, we do not use or extend the mechanism proposed by
Reynolds [20]. We model the swarm using dynamic Gibbs
Random Fields (GRF), which provide a robust framework
for dealing with spatially correlated probabilities. We have
been inspired by Tan et al. [29] that used GRF to self-
organize homogeneous robots. Besides the use of hetero-
geneous robots, there are other crucial differences between
our work and [29]: we model a continuous movement of
the robots in a bounded environment and limit the robots’
maximum velocities, while Tan et al. consider a discrete
and a bounded environment and assume lattices as their
environment. In addition, we introduce a different potential
function that makes all the difference in our approach.
In contrast with previous work, we adopt the Coulomb-
Buckingham Potential [30] coupled with a Kinetic Energy
term to model the robots’ interactions.

III. BACKGROUND

In this section, we overview some concepts about Gibbs
Random Fields (GRFs) explaining their properties and why
they make sense in a swarm robotics context. A GRF is
a probabilistic graphical model that is a particular case of
the Markov Random Field (MRF) when the joint probability
density of the random variables is strictly positive. GRF
models are based on local interactions between neighboring
agents. The Markov property is a conditional property that
allows one to ignore more distant information as soon
as local information is provided. The Hammersley-Clifford
theorem establishes the equivalence between a MRF and a
GRF [31].

To describe these models succinctly, assume an undirected
graph G = (V,E) with vertices as spatial sites and indexed
by v = 1, 2, ..., η. A random field on G is as collection
of random variables X = {Xv}v∈V and, for each v ∈ V,
let Λv be finite set called the phase space for site v that
represents where the random variable Xv takes it values.
An instance of X establishes a state of the random field
x = {(x1, ..., xη) : xv ∈ Λv, v ∈ V} and the product space
Λ ≜ Λ1 × ...× Λη forms the configuration space.

A neighborhood system on V is a family N = {Nv}v∈V,
where Nv ⊂ V is the set of neighbors for site v satisfying
v/Nv and r ∈ Nv ⇔ v ∈ Nr. The neighborhood system
induces the configuration of the undirected graph G by
setting an edge {v, r} ∈ E between v and r if and only
if r ∈ Nv . A set C ⊂ V is called a clique if all elements of
C are neighbors of each other.

Thus, a random field X is called an MRF concerning the
neighborhood system N if, ∀v ∈ V,

P (Xv = xv|(Xr = xr)r ̸=v) = P (Xv = xv|(Xr = xr)r∈Nv
),

(1)
which indicates that the probability of the site v assuming
the state xv given the state of all other sites is equal to the
probability of v assuming the same state xv given only the
states of neighboring sites. Such a definition reflects the local
characteristics of the MRF constrained by the local Markov



properties [32]. It is convenient to model robotics swarms,
since it implies the conditional independence of information
coming from outside a neighborhood system, which supports
the requirement of local interactions.

A GRF is a particular application for (1) when the Gibbs
measure can represent its joint probability density. A Gibbs
measure is a generalization of the canonical ensemble to
infinite systems, which gives the probability of the system
X being in the state x. Formally, let us denote a potential U
as a family {UA : A ⊂ V} of functions on the configuration
space Λ, where UA : Λ → R, and UA(x) depends only on
xA ≜ {xv : v ∈ A}. At the end, UA is only a function
of the values at the sites contained in the set A, that is
UA(x) ≡ UA(xA). In this way, given a potential U, the
potential energy H(x) for configuration x is defined as

H(x) =
∑
A⊂V

UA(xA). (2)

By definition [31], if UA ≡ 0 whenever A is not a clique
or a singleton, U is called a nearest-neighbor potential. If
UA ≡ 0 whenever A is not a pair or a singleton, U is called
a pairwise potential. U is called a pairwise, nearest-neighbor
potential if it is both a pairwise potential and a nearest-
neighbor potential. In particular, for a pairwise, nearest-
neighbor potential U , we can write (2) as

H(x) =
∑
v∈V

U{v}(xv) +
∑

(v,t)∈V×V,t∈Nv

U{v,t}(xv, xt).

(3)
Finally, a random field X is called a GRF if,

P (X = x) =
1

Z
e−

H(x)
T , with Z =

∑
z

e−
H(z)
T , (4)

where Z is the partition function (normalizing constant);
T is interpreted as temperature in the context of statistical
physics; and 1

Z e−
H(x)

T is called Gibbs distribution.
Researchers in statistical mechanics and mathematics usu-

ally applied the GRF to describe the distribution of system
configurations at the thermodynamic equilibrium or measure
the probability of such a system yielding the desired state.
One of the challenges of directly evaluating (4) is the high
cardinality of the configuration space, which makes the
computation of Z intractable.

A typical approach to sequential sampling states in a
configuration space given a probability function consists of
using Markov Chain Monte Carlo (MCMC) methods, such as
the Metropolis algorithm [33]. A process to parallelly sample
over (4) is described in the next section.

IV. METHODOLOGY

The general idea of our methodology consists of modeling
the configuration of a swarm of heterogeneous robots as
a GRF and then sampling velocities for each robot in
a decentralized way, which leads the entire swarm to a
convergence towards the global minimum of the potential.

A. Formalization

Consider a set R of η heterogeneous robots navigating
in a bounded region within the two-dimensional Euclidean
space1. The state of the i-th robot at time step t is represented
by its pose q

(t)
i and velocity2 q̇i

(t) = v
(t)
i , which is

bounded by vmax, ||v(t)
i || ≤ vmax. In addition, robots

are driven by a holonomic kinematic model with motion
model K : (q

(t)
i ,v

(t)
i ) → (q

(t+1)
i ). The heterogeneity of the

system is modeled by a partition τ = {τ1, ..., τm}, with each
τk ⊂ R containing exclusively all robots of type k. That is,
∀(j, k) : j ̸= k → τk ∩ τj = ∅.

Each robot has a circular sensing range of radius λ,
where it can estimate the relative position and velocity of
other robots as well as their type, and also obstacles within
the environment. Obstacles are represented as a finite set
of points O = {o1, ...,on}. An obstacle detected by the i-
th robot consists of a subset of points Oi ⊂ O, where
oj ∈ Oi → ||oj − qi|| ≤ λ and ||oj − qi|| is the Euclidean
norm between two points.

The neighborhood system for the i-th robot, constrained
by the sensing range λ, defines a set of robots:

Ni ≜ {j ∈ R : j ̸= i, ||qj − qi|| ≤ λ}. (5)

B. Extension of the GRF to swarm robotics

Inspired by the GRF capability in modeling local interac-
tions, here we discuss its concepts in the context of swarm
robotics. Following the modeling presented in section III,
let us define a graph G = (R,E) with a set of random
variables X = {Xi}i∈R, in which each Xi models the
random velocity vi of the i-th robot. A configuration of the
system X is x = {v1, ...,vη} where vi ∈ Λi and represents
the velocities performed by each robot.

A neighborhood system on R, given a configuration space
x, is a family N = {Ni}i∈R, where Ni ⊂ R is the set
of neighbors defined in (5) and satisfies i/Ni and the
symmetry j ∈ Ni ⇔ i ∈ Nj . The neighborhood system N
induces the configuration of the graph G by establishing an
edge between each pair (i, j) of robots if and only if j ∈ Ni.

Until now, our definitions only allow us to calculate the
probability of the entire swarm reaching a certain configura-
tion, but what we require here is to sample velocities for each
robot given the information about the robots in its neighbor-
hood. Next, we explain how we perform such a procedure
in a decentralized way using the Gibbs distribution.

C. Parallel Gibbs sampling

Parallel Gibbs sampling implies that all robots are simulta-
neously updating their velocities based on the configuration
x at time t. Such a method is possible here due to the local
nature of the Gibbs potential energy.

Formally, let t denote the temporal index and
x(t) = x = (v1, ...,vη) be the swarm configuration at time
t. Let Zi(x) ≜ {zi : ||zi|| ≤ vmax}, where Zi(x) ⊂ Λi,
be the set of possible velocities for the i-th robot given

1We assume two-dimensional space for convenience but one can straight-
forward extend it to three-dimensional space.

2From now on, we use the symbol v to represent robot velocities.



the configuration x(t). Using (4), the i-th robot updates its
velocity vi

(t) = vi to vi
(t+1) = v̄i with probability

Pi(vi, v̄i|x) =


e
−H(v̄i,xR\i)/T∑

zj∈Zi(x)

e
−H(zj ,xR\i)/T

, if v̄i ∈ Zi(x)

0, otherwise.
(6)

Note that (6) still depends on the global knowledge at the
potential energy H(·,xR\i). However, if we rewrite (3) as,

H(·,xR\i) =

U{i}(·) +
∑

∀j∈R\i

U{j}(vj)

+

∑
∀j∈Ni

U{i,j}(·,vj),

(7)

one may note that the second term inside the parenthesis is
constant for the i-th robot, which lets us reduce the form for
H(v̄i,xR\i) and H(zi,xR\i) in (6). This shows the local
nature of the Gibbs potential energy and implies that we do
not require the knowledge of the entire swarm to sample
velocities for the i-th robot, but only information about its
neighbors Ni. Thus, we can rewrite (6) as

Pi(vi, v̄i|x) =
e
−
(
U{i}(v̄i)+

∑
∀j∈Ni

U{i,j}(v̄i,vj)

)
T−1

∑
zi∈Zi(x)

e
−
(
U{i}(zi)+

∑
∀j∈Ni

U{i,j}(zi,vj)

)
T−1

,

(8)
where v̄i ∈ Zi(x).

D. Potential energy

Here we propose combining two potential functions
into the potential energy H(·) to achieve simultaneous
segregative-flocking behaviors of the swarm.

1) Coulomb-Buckingham potential: The Coulomb-
Buckingham potential [30] is a combination of the
Lennard-Jones potential with the Coulomb potential used to
describe the interaction among particles considering their
charges. We took advantage of such a mechanism to model
the swarm’s heterogeneity by setting the particle charges.
The formula for the interaction is

Φ(r) = ε

(
6

α− 6
eα

(
1− r

r0

)
− α

α− 6

(r0
r

)6
)
+

cicj
4πε0r

,

(9)
where r = ||qj − qi|| is the euclidean distance between the
particles i and j; ε is the depth of the minimum energy; r0
is the minimum energy distance; α is a free dimensionless
parameter; ci and cj are the charges of the particles i and j;
and ε0 is an electric constant.

We define the interaction among the i-th and j-th robots
by replacing the product cicj by the following function,

C(i, j) = (2 1((i, j) ∈ τk)− 1) |cicj |, (10)

where 1(·) denotes the indicator function. In this way C(i, j)
will be positive if the i-th and j-th robots belong to the
same group τk and negative otherwise. Fig. 1 illustrates the
Coulomb-Buckingham potential.

Fig. 1: The Coulomb-Buckingham potential function. It
depends on the distance r among the i-th and j-th robots
and a function C(i, j) that produces attractive or repulsive
behaviors depending on the heterogeneity among them.

2) Kinetic energy: We assume classical mechanics to
compute the kinetic energy produced by relative velocities
of the i-th robot neighbors. Let Vi define the resultant of
the relative velocities among all neighbors within the same
partition of the i-th robot. The kinetic energy Ek relative to
the i-th robot is:

Vi =
∑

∀j∈Ni∧(i,j)∈τk

vj , Ek(Vi) =
1

2
m(Vi ·Vi), (11)

where m is the cumulative mass of the group.
3) Combination: We combine the Coulomb-Buckingham

potential and the kinetic energy to define the potential
energy H(v̄i,xR\i). Here, the individual potential U{i}(v̄i)
represents an obstacle avoidance factor defined by

U{i}(v̄i) =
∑

∀j∈Oi

Φ(||K(qi, v̄i)− oj||), (12)

and ∀j ∈ Oi : C(i, j) > 0.
The nearest-neighbor potential establishes a segregative-

flocking factor formulated as∑
∀j∈Ni

U{i,j}(v̄i,vj) =
∑

∀j∈Ni

Φ(||K(qi, v̄i)−K(qj ,vj)||)+

Ek(Vi) +Ek(vmax − v̄i),
(13)

where the first term defines the attraction and repulsion
among two robots and the second one is the relative velocity
of the neighbors. Since we compute the kinetic energy using
relative velocities, when Ek(Vi) → 0, there is a duality on
the behavior produced by the robots. More specifically, one
may not differentiate if the robots are stationary or moving
with the same velocities. To avoid such duality, we added
a third term to force the i-th robot to reach its maximum
speed.

E. Sampling algorithm
Finally, given the probability function (8) and the potential

energy defined by combination of (12) and (13) one may use
a MCMC algorithm to sample velocities for the i-th robot.
In this work, we use the Metropolis-Hastings algorithm [34]
for sampling the velocities.
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Fig. 2: Demonstration of segregative flocking of 5 heterogeneous groups with 100 robots each.

V. EXPERIMENTS AND RESULTS

To evaluate the performance of our approach, we conduct
a series of simulated experiments. We first analyze the
segregative behavior by measuring the method’s performance
for different configurations and comparing the results with
other methods from the literature. Then, to analyze the
flocking capabilities, we evaluate the velocity consensus and
the cohesion among the robots when there is noise in the
sensor. Finally, we performed experiments with real robots
as a proof-of-concept to show the feasibility of our approach
in real scenarios. Fig. 2 shows snapshots illustrating the
simultaneous flocking segregative behavior produced by our
methodology. A video of the experiments is available at
Youtube3 and the source code at Github4.

A. Segregation Analysis
To evaluate the segregative behavior considering only

local information, we compare the convergence rate of our
approach against the one presented by Mitrano et al. [15]
and Inácio et al. [17]. We consider the work proposed by
Santos et al. [10] as a baseline since it assumes global
knowledge about the positions of other robots leading to a
fast convergence rate. We also contrast our methodology with
a deterministic gradient descent approach using potential
differentials to show that such mechanism may be easily
trapped at local minima.

The experiments consisted of 100 runs of each approach
with a maximum of 20000 iterations. A random initial state is
generated for each run, but it is the same for all approaches.
At each iteration, the robot can move a maximum of 0.02
meters in a square area of 10 by 10 meters with the walls
being considered obstacles. We varied the number of robots
and the number of heterogeneous groups to evaluate each
approach’s performance. As a metric, we compute the total
amount of clusters formed by robots of the same type and the
number of iterations necessary to reach it. Here, two robots
of the same type are considered to be in the same cluster
if their relative distance is less than 0.3 meters – the robot
radius is 0.07 meters. The sensing range is set to 0.5 meters
(λ = 0.5) Fig. 3 shows the mean and the 99% confidence
interval comparing one with the other approaches.

Analyzing the segregation using the number of formed
clusters, we can see that all approaches executed relatively
well for a small number of groups, even for an increasing

3https://youtu.be/KooNGIStWlM
4https://github.com/verlab/2021-icra-grf-swarm

(a)

(b)

Fig. 3: The minimum number of clusters yield by each
approach in up to 20000 iterations when: (a) we increase
the number of robots |τm| = {10, 30, 60} keeping |τ | = 5
heterogeneous groups; and (b) we increase the number of
groups |τ | = {5, 15, 30} keeping |τm| = 10 robots per group.

number of robots per group (Fig. 3a, top). The exception
is the Gradient-Descent method, which gets trapped in
local minima and cannot reach a segregated state. When
the number of groups increases, our approach significantly
outperforms the others, with a performance close to the
baseline which uses global information (Fig. 3b, top). When
there is a large number of groups, robots usually get trapped
by other groups and cannot reach a segregated state. By
relying on the stochastic nature of the GRF, our approach
can handle these situations better.

Regarding the performance in terms of the number of
iterations to reach segregation, we can see that the methods
have a similar performance on average when increasing the
number of robots. However, all of them are significantly
slower than the baseline, which uses global information (Fig.
3a, bottom). When we vary the number of groups, we can see
that Inácio et al. have a better performance (Fig. 3b, bottom).
However there may be a caveat, specially for |τ | = 30: our
metric considers the number of iterations spent until reaching
the minimum number of clusters. As previously mentioned,

https://youtu.be/KooNGIStWlM
https://github.com/verlab/2021-icra-grf-swarm


Inácio’s method does not reach the minimum number of
clusters on several occasions. So, it may be converging faster
but to a sub-optimal configuration. On the other hand, our
method may take longer due to its stochastic nature, but has
a much better success rate.

B. Flocking Analysis

To evaluate the effectiveness of our approach in producing
flocking behaviors, we carried out some experiments and
analyzed them regarding the average distance (cohesion)
and consensus speed between robots of the same type. The
robustness of our method is assessed by adding Gaussian
noise ϵ to the sensor model so that the relative position
and velocity estimates are not reliable. Here, we perform
100 runs with a maximum of 20000 iterations. We assume
|τm| = 30 robots into |τ | = 5 heterogeneous groups and
sensing range λ = 0.5 meters. The robots start each run
in a random initial state and perform both segregation and
flocking within an environment of 10 by 10 meters at a
maximum speed of vmax = 1.0 meters per second. Noise
in the sensor model ranges from ϵ = {0%, 2%, 6%, 10%}
for both relative position and velocity. A noise of ϵ = 10%
implies an error of up to 10%λ = 0.05 meters in position
and 10%vmax = 0.10 meters per seconds in speed. Fig. 4
shows the mean and the 95% confidence interval evaluating
the impact that such a noise causes in our methodology.

As expected, increasing noise in the sensor model sig-
nificantly impacts the velocity consensus. We observed that
up to ϵ = 6%, the swarm is able to maintain the flocking-
segregative behavior for the experiments’ configuration.
When ϵ = 10%, we notice the velocity consensus degrading
and, consequently, the flocking behavior does not converge.
However, even with the noise we can segregate the swarm
to the minimal number of clusters most of the times for a
sufficiently large number of iterations.

Fig. 4: Impact of the noise in the sensor model on the
performance of our method. The graphics display the number
of clusters yield, the average distance, and velocity error
among the same group of robots in up to 20000 iterations.

C. Real robots
To evaluate the feasibility of our approach in a real

environment, we performed proof-of-concept experiments
using five e-puck robots [35]. The robots receive velocity
commands from a remote server executing ROS. Given that
our robots do not have any sensor that allows them to
estimate the relative position and velocity of neighboring
robots, we emulate such a sensor using the Optitrack motion
capture system [36].

Here we consider the bounded environment as a square
area of 2 by 2 meters restricted by walls. We set the sensing
distance to λ = 0.3, and as we have only a few robots, we
evaluate cases where we have one or two groups. That is one
group with five robots and two groups with two and three
robots each. Fig. 5 shows the performance of our approach
using real robots. We can see that the robots can reach
segregation and also keep the flocking behavior, but with
some noise in the velocity consensus due to the uncertainties
observed in real settings.

Fig. 5: Results on real experiments using five epuck robots
divided into one or two groups.

VI. CONCLUSION AND FUTURE WORK

This paper presented a novel decentralized approach that
allows a swarm of heterogeneous robots to achieve simulta-
neously segregation and flocking behaviors using only local
sensing. We compared the segregative behavior with some
state-of-the-art approaches and evaluated the flocking behav-
ior in simulated and real scenarios. Results showed that our
methodology can segregate a group of heterogeneous robots
while keeping cohesive navigation around the environment.

In future work, we intend to equip our robots with distance
and bearing sensors and temporally combine their infor-
mation to locally estimate the neighboring robots’ velocity
and position. Moreover, there are several opportunities for
future studies and applications using the GRF framework.
In particular, we intend to investigate the possibility of
performing more complex tasks, such as transport and shape-
formation.
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