
Noname manuscript No.
(will be inserted by the editor)

HeRo 2.0: A Low-Cost Robot for Swarm Robotics Research

Paulo Rezeck · Héctor Azpúrua · Maurício F. S. Corrêa · Luiz Chaimowicz

Received: date / Accepted: date

Abstract The current state of electronic component
miniaturization coupled with the increasing efficiency in
hardware and software allow the development of smaller
and compact robotic systems. The convenience of using
these small, simple, yet capable robots has gathered the
research community’s attention towards practical appli-
cations of swarm robotics. This paper presents the de-
sign of a novel platform for swarm robotics applications
that is low cost, easy to assemble using off-the-shelf
components, and deeply integrated with the most used
robotic framework available today: ROS (Robot Oper-
ating System). The robotic platform is entirely open,
composed of a 3D printed body and open-source soft-
ware. We describe its architecture, present its main fea-
tures, and evaluate its functionalities executing exper-
iments using a couple of robots. Results demonstrate
that the proposed mobile robot is capable of perform-
ing different swarm tasks, given its small size and re-
duced cost, being suitable for swarm robotics research
and education.

Paulo Rezeck and Hector Azpúrua
Graduate Program in Computer Science,
Computer Vision and Robotics Laboratory,
Department of Computer Science,
Universidade Federal de Minas Gerais, Brazil.
E-mail: {rezeck, hector.azpurua}@dcc.ufmg.br

Hector Azpúrua is also with
Instituto Tecnológico Vale,
Ouro Preto, MG, Brazil.
E-mail: hector.azpurua@itv.org

Maurício F. S. Corrêa
Computer Vision and Robotics Laboratory,
Department of Computer Science,
Universidade Federal de Minas Gerais, Brazil.
E-mail: mauricio.ferrari@dcc.ufmg.br

Luiz Chaimowicz
Computer Vision and Robotics Laboratory,
Department of Computer Science,
Universidade Federal de Minas Gerais, Brazil.
E-mail: chaimo@dcc.ufmg.br

Keywords Swarm robotics · Mobile Robot · Au-
tonomous Robot

1 Introduction

Robotic swarms are potentially becoming well suited for
a wide range of real-world problems with a high societal
and economic impact. The requirement of distributed
and decentralized processing relying only on local in-
formation brings several practical advantages over other
robotic systems allowing scalability, resiliency, and adapt-
ability. This aspect further leverages the use of swarm
robots in agriculture, the mining industry, warehouse
management, and robotics education.

In spite of the increasing application potential of
real-world robot swarms, several challenges are still open,
ranging from efficient processing and communication to
robust locomotion and sensing. In addition, one of the
main challenges in employing swarm-based solutions in
the real world is the development of capable yet afford-
able robotic platforms.

Moreover, despite the existence of off-the-shelf so-
lutions and some open software and hardware efforts,
the cost of the platforms and the logistics make it dif-
ficult for many researchers or educators to acquire or
reproduce most of them. In order to alleviate such is-
sues, the robotic platform presented in this work takes
advantage of the recent technological advancements to
use mass-produced components that are smaller, afford-
able, and long-term available. In addition, the design
and assembly process follow new trends, such as the
Maker Movement and Do It Yourself, which allow oth-
ers to reproduce and customize the robot using additive
manufacturing.

In this sense, we assume the following requirements
as an objective to build a swarm-capable robotic plat-
form:

2 Paulo Rezeck et al.

– Affordability: Robots should be as inexpensive as
possible since most swarm teams may have tens or
hundreds of robots;

– Small and yet capable: Robots should be small
and equipped with some form of sensing capability
to allow interaction with their environment; Also,
they should have a long-term power autonomy since
the swarm may need to operate long enough for the
collective behavior to emerge;

– Reliability: Robots should be highly fault-tolerant;
– Scalability: They should be able to successfully

perform different tasks even when the number of
robots increases. In this sense, communication ca-
pabilities should support a large number of robots;

– Easily reproducible: Robots must be easily as-
sembled and must not use hard-to-acquire or ex-
tremely hard-to-assemble components;

– Easily programmable: Robots should be easily
programmable and compatible with modern robotic
frameworks and development pipelines.

Satisfying these conditions in a single design is a dif-
ficult challenge. The design choices concerning one re-
quirement, such as size, produce additional constraints
to others, such as sensing and powering. Consequently,
the design process should simultaneously take all of
these constraints and find convenient design solutions
for multi-purpose applications.

Assuming the above requirements for a capable swarm
robotic device, we present the design of HeRo1, a signifi-
cant low-cost robot (18 USD) composed of a 3D printed
body and off-the-shelf components (Fig. 1). The robot is
entirely open-source and carries a diverse set of sensors
that makes it suitable for a wide range of swarm appli-
cations and education efforts. The platform is deeply in-
tegrated with the highly popular Robot Operating Sys-
tem (ROS) framework for quick prototyping, allowing
remote and local robot control using standard program-
ming interfaces. In order to facilitate the development
of swarm algorithms, we also provide a simulated robot
model with a realistic test environment in Gazebo. This
work is an evolution upon the first, simpler, version of
the HeRo platform presented in [30].

The real-world sensorial and locomotion performance
of the HeRo platform was evaluated in comparison to
other popular commercial robot platforms. Some of the
metrics for comparison are odometry accuracy, range,
and quality of IR sensors (when used as range sen-
sors), power consumption and autonomy, communica-
tion robustness, and scalability potential. Further, we
also evaluated the HeRo performance in some cooper-
ative tasks such as flocking, transportation, and map-
ping. Besides being relatively small in size, results show
that the HeRo platform is significantly capable, making
it cost-effective and suitable for swarm applications.

1 HeRo 2.0: https://verlab.github.io/hero_common

Fig. 1: Design of the proposed open swarm robotic plat-
form. The body of the robots was designed for and fab-
ricated using additive manufacturing.

The remainder of this paper is structured as follows.
A review of the literature of small robot platforms and
systems is presented in Section 2. The mechanical and
electrical design, as well as the software and commu-
nication architecture, are presented in Section 3 and
Section 4, respectively. The robot’s performance with
respect to a set of metrics is evaluated experimentally
in Section 5. In Section 6, we present the use of HeRo
in some swarm applications. Finally, Section 7 brings
the conclusions and directions for future work.

2 Related Work

Swarm robots have some elementary features that dif-
ferentiate them from other types of platforms, such as
simplicity, the capacity to scale and cooperate, size,
and communication capabilities, among others [23]. Es-
pecially, some critical aspects for a swarm robot are
footprint and cost, as those two aspects will facilitate
the scalability of a real-world swarm system. Modern
robotic systems also leverage the ecosystem and mod-
ularity of the Robot Operating System (ROS) [27] to
improve the development environment and allow real-
istic simulations.

In this sense, a wide range of small and relatively
simple robots have been proposed for swarm applica-
tions. Most of these platforms are open or have open-
source parts, while only some of them are closed source
or only available commercially. In this section, we present

https://verlab.github.io/hero_common

HeRo 2.0: A Low-Cost Robot for Swarm Robotics Research 3

the most prevalent and relevant platforms for general
swarm experimentation and highlight the most impor-
tant pros and cons of each one. We divide them accord-
ing to their locomotion mechanisms and restrict this
comparison to small robots (less than 10 cm), which
are generally more suitable for swarm robotics. Table 1
presents a summary of this comparison.

2.1 Vibration-based platforms

Recently, robots using vibration-based motion mech-
anisms have become more common. In general, such
mechanism can be easily coupled to the robot, but re-
quires an extra effort in the robot’s motion control algo-
rithms. In addition, it requires a smooth experimenta-
tion surface and may have a relatively slow movement.
Moreover, there is no real form of odometry, making
it challenging to move precisely over long distances or
perform for a long time if this information is necessary.

The Kilobot [31], developed at Harvard University
- USA, is one of the most popular swarm robots. It is an
open-source platform with parts costing only 14 USD.
But it is also produced and distributed as a commer-
cial product for 100 USD. The robot has an ATmega328
(8-bit at 16 MHz) microcontroller and is equipped with
an ambient light sensor on top and an IR sensor on
the bottom used for proximity readings and communi-
cation. The robot has an alternative moving principle
based on two vibration motors, reducing cost and size,
but it also limits the robot’s maximum speed up to
1 cm/s. An overhead controller device is used to com-
municate via IR with all robots enabling remote control
and uploading the robot’s firmware over the air. Even
with a relatively high commercial cost and limited sens-
ing, research groups were able to successfully carry out
experiments with up to 1000 robots [33], showing that
Kilobot may be an interesting platform for swarm ap-
plications.

The Droplet [14,9] is another vibration-based small
robot developed at the Correll Robotics Lab at the Uni-
versity of Colorado Boulder, USA. Despite being slightly
larger than Kilobot, this robot features improvements
in the mechanism of locomotion and sensing. The robots
carry six IR sensors for proximity, bearing, and robot-
to-robot communication. For locomotion, it uses three
vibration motors to allow omnidirectional control of
the robot, which is very convenient given its low speed
(1 cm/s). An Xmega128a3u (16-bit at 32 Mhz) micro-
controller is also an improvement over Kilobot, allowing
control, data processing, and general-purpose computa-
tion. In addition, the Droplet can also perform contin-
uous experiment runs due to a powered floor equipped
with alternating positive charge and ground stripes. Be-
sides powering, this feature is also suitable for data
transmission, enabling programming an entire swarm
directly via the floor. The commercial cost of this robot

is similar to the Kilobot (100 USD), but it still requires
a powered floor mechanism to power the robots.

2.2 Wheel-based platforms

Although vibration-based locomotion does not require
any complex mechanism to actuate the robot, such ap-
proach proves unsuitable for precise movements over
long distances, mainly due to their nonlinear behavior
and excessive slippage towards undesired directions. On
the other hand, wheel based systems are more practi-
cal to control and efficient given that the torque gen-
erated by the motor acts directly and roughly linearly
on the wheel. Below we list some wheel-based robotic
platforms.

Khepera [22,21] is one of the early small robots
developed in the mid-1990s at the LAMI laboratory
at École Polytechnique Fédérale de Lausanne (EPFL),
Switzerland. The original version of Khepera is a small
(5.5 cm) differential wheeled mobile robot that has been
used by researchers of several universities for different
applications. Two DC brushed servo motors with incre-
mental encoders actuate and control the robot’s wheels
to reach up to 100 cm/s. A Motorola 68331 (32-bits at
16 MHz) microcontroller running µKOS RTOS serves
as the robot’s main processor, enabling motion control,
sensing, and communication. In addition to eight IR
sensors used to estimate distance and ambient light,
the robot also allows extra modules that expand its
functionality. Some examples are gripper-like manipu-
lation, vision, and robot-to-robot communication mod-
ules. Over the years, several versions of Khepera have
been developed, improving unit processing, locomotion,
and sensing but requiring an increase in size. The lat-
est version, the Khepera IV [34], is still a differential
wheeled mobile robot with a diameter of 14 cm. This
robot houses twelve IR sensors, five ultrasound sensors,
two microphones, encoders, an inertial measurement
unit (IMU), and a camera. The main processing unit is
a Gumstix embedded computer running GNU/Linux,
and Bluetooth allows robot-robot communication or
communication with a remote server. Its commercial
version retails for 3180 USD.

Alice [7] is another small robot developed for swarm
applications at the Autonomous Systems Lab at École
Polytechnique Fédérale de Lausanne (EPFL), Switzer-
land. Alice is a two-wheeled differential drive robot made
of a light plastic chassis with PCB on top. The robot has
a small footprint of 2.2 cm and uses two high-efficiency
swatch motors for locomotion reaching up to 40 cm/s.
A low-power PIC16F877 (8-bits at 4 MHz) microcon-
troller controls the robot and executes other applica-
tions. Alice has various built-in sensory modules such
as 4 IR sensors mounted around the robot for obstacle
detection and short-range robot-to-robot communica-
tion. An IR receiving on top allows the robot to receive

4 Paulo Rezeck et al.

Table 1: Comparison of popular swarm robotics platforms.

Robot

C
ost

(U
SD

)

Size
(cm

)

M
otion/Speed

(cm
/s)

C
om

m
unication

A
utonom

y
(h)

B
uiltin

Sensors

O
pen

Source

R
O
S

Enabled

FW
Program

m
ing

Kilobot [31] 100/14∗ 3.3 vibration, 1 IR 3− 24 proximity, light ✓ - OTA
Droplets [14] 100 4.4 vibration, 1 IR ∞ distance, light, bearing ✓ - wired

Khepera I [22] N/A 5.5 wheel, 100 IR/RF 1− distance, light, encoder - - wired
Alice [7] N/A 2.2 wheel, 40 IR/RF 1− 10 distance, light - - wired
AMiR [3] 85∗ 7.5 wheel, 10 IR 2 distance, light, bearing - - wired
E-puck [20] 975 7.0 wheel, 13 Wi-Fi/Bluetooth 1− 3 distance, light, camera, mic, imu - ✓ OTA
Jasmine [12] 120∗ 3.0 wheel, 30 IR 1− 2 distance, light, bearing ✓ - wired
GRITSBots [26] 50∗ 3.0 wheel, 25 RF 1− 10 distance, bearing, imu ✓ - OTA
Zooids [16] 50∗ 2.6 wheel, 44 RF 1− 2 touch sensor ✓ - wired
mROBerTO [13] 60∗ 1.6 wheel, 15 Bluetooth 1− 6 distance, light, imu, camera ✓ - OTA
WsBot [17] 17∗ 3 wheel, 3.5 Wi-Fi 4 - - ✓ wired
MicroMVP [38] 90∗ 8.0 wheel, 25 Zigbee 1− 2 - ✓ ✓ wired
Cellulo [24] 140∗ 7.5 wheel, 18 Bluetooth 2 touch, visual odometry - - OTA
Colias IV [11] 100∗ 4.0 wheel, 35 Bluetooth 1− 3 distance, light, camera, mic, imu ✓ - wired
Mona [1] 120 6.5 wheel, 15 RF ∞ distance, light, encoder ✓ ✓ wired

HeRo 18∗ 7.3 wheel, 25 Wi-Fi 3− 9 distance, light, encoder, imu ✓ ✓ OTA
*parts only

external commands, and a radio frequency (RF) mod-
ule is used for remote communication. In addition, the
robot supports different expansion modules, such as a
gripper module and a linear camera. The first design
of Alice used two watch batteries allowing the robot
to operate for up to 10 hours. Further evolution of the
platform allows the use of solar panels.

AMiR [3] is a two-wheeled differential drive small
robot developed at the University Putra, Malaysia. It
is an open platform, and the components required to
assemble it cost about 85 USD. The robot’s footprint
is 7.5 cm, and two micro DC internal gear motors ac-
tuated the robot with a maximum speed of 10 cm/s.
An ATmega168 (8-bits 8 MHz) microcontroller is used
as the main processor to control all functions such as
communication, trajectory, and perception, among oth-
ers. The robot carries 6 IR sensors enabling proximity
and bearing estimation and also short-range robot-to-
robot communication. The robot uses a 3.7 V 200 mAh
lithium battery allowing it to operate up to 2 hours. In
addition to the physical platform, AMiR has been suc-
cessfully simulated in Player/Stage and has been used
by several researchers and robotics educators [2,4].

The E-puck [20] is one of the most successful small-
size commercial robots. Initially designed for education
it has also been used for swarm robotics research. The
E-puck is a two-wheeled differential drive robot, and
its retail cost is about 975 USD. The robot has a small
footprint of 7.0 cm and uses two planetary-geared step
motors for actuation, reaching up to 10 cm/s. The lat-
est version of the e-puck is powered by an STM32F4
(32-bits at 180 MHz) microcontroller, and an Espressif
ESP32 is used as Wi-Fi/Bluetooth module. The robot

hosts various built-in sensors, including microphone ar-
rays, proximity sensors, a 640× 480 pixels camera, and
an inertial motion unit. The robot can be programmed
through a serial BUS or Bluetooth interface, and Wi-
Fi is used for communication. In addition, it can be
extended with other sensing modules, such as bearing
and an omnidirectional camera module, and even pro-
cessing modules using Raspberry Pi. The robot uses a
3.7 V 1200 mAh lithium battery allowing it to oper-
ate up to 3 hours. A growing user community provides
software, documentation, and discussion groups favor-
ing the platform’s integration with various simulators
and robotics frameworks, such as Gazebo and ROS. De-
spite its benefits, the commercial version of the basic
E-puck is quite expensive, making it not affordable for
large swarms.

Jasmine [12] is another widely used two-wheeled
differential drive small robot. Developed at the Univer-
sity of Stuttgart, Germany, its parts cost about 120 USD.
The Jasmine robot has a small footprint of 3 cm and
uses two micro DC internal gear motors to actuate the
wheels, reaching a maximum speed of 30 cm/s. The
third version of the robot is equipped with an AT-
mega168 (8-bits at 20 MHz) microcontroller, and uses
6 IR sensors for proximity and bearing estimation, light
measurements, and communication with other robots.
The robot also has LEDs on top, allowing status moni-
toring or debugging. In addition, many customized boards
can extend the robot’s capabilities, including improved
sensing and connectivity. The current version of Jas-
mine uses a 3.7 V 250 mAh lithium battery that has
enough capacity for running time up 2 hours. More-
over, the robots can autonomously recharge the bat-

HeRo 2.0: A Low-Cost Robot for Swarm Robotics Research 5

tery by touching a pair of metal contacts (power and
ground) attached to the wall for convenience. Thus, the
robot detects when its battery needs to be recharged
and moves autonomously to the dock without human
intervention.

GRITSBot [26] is a small robot developed at Geor-
gia Institute of Technology, USA. GRITSBot is part of
Robotarium, a project to make multi-agent experiments
more accessible to the research community, opening up
a showcase testbed to the general public [25,37]. The
GRITSBot is another wheeled differential-drive robot
composed of three modular layers that house five func-
tional robot blocks. The motor layer is responsible for
controlling the two stepper motors and odometry esti-
mation. The mainboard houses an Atmega328 (8-bit at
16 MHz) microcontroller, the wireless communication
module, the battery charging circuit, and the power
supply. A Nordic nRF24L01 microchip serves as a low-
power consumption communication module operating
at 2.4 GHz. This module enables robot-to-robot com-
munication, over-the-air firmware reprogramming, and
remote control from a server. The sensor layer includes
six infrared distance sensors, an accelerometer, and a
gyroscope. A 400 mAh LiPo battery supplies the robot
allowing long-time power autonomy up to five hours.
The robots can also move autonomously to a power
source and automatically recharge the battery conve-
niently.

Zooid [16] is a small robot platform designed for
swarm applications available at an approximate cost of
50 USD. This robot is an open-source open-hardware
platform created as a joint work between the Shape Lab
at Stanford University (USA) and the Aviz team at In-
ria (France). The motors are mounted in a non-collinear
fashion, allowing a small footprint of only 2.6 cm. Even
though the motors do not rotate around the same axis,
the robot has a similar net force and moment as a
robot with colinear motors. An STM32F4 (32-bit at
48 MHz) microcontroller manages the overall logic com-
putation and communicates wirelessly with the main
master computer using an nrf24L01 2.4 GHz radio chip.
In addition, the robot is equipped with touch sensors
for tactile swarm applications and some on-top photo-
diodes used for localization. A projector-based track-
ing system is used for robot position tracking. This de-
vice projects a sequence of gray-coded patterns onto
a flat surface, enabling the robots to use their photo-
diodes to decode the gray code into position and ori-
entation. Unlike classical camera-based systems, this
projector-based tracking system does not add any la-
tency from networking for the local feedback control
on each robot, making position control more stable.
However, this localization system costs approximately
700 USD and archives similar resolution compared to
overhead-camera localization systems.

The mROBerTO [13] is a small footprint (1.6 cm)
robot developed atUniversity of Toronto, Canada. De-

spite the small footprint, the robot features several built-
in sensors such as distance, ambient light, IMU, and
camera, making it interesting for swarm applications. In
addition, the robot supports extensions such as a mod-
ule with 8 IR sensors for obstacle detection. The robot’s
mainboard is a Nordic nRF51422 microchip composed
of an ARM Cortex-M0 (32-bits at 16 MHz) with built-in
Bluetooth Smart and ANT+ capability. The nRF51422
board supports over-the-air programming, saving time
when setting up several of robots simultaneously. Re-
garding the robot actuation mechanism, the first ver-
sion of mROBerTO did not require wheels and used the
motor shafts directly in contact with the floor surface
to move the robot. Despite being a compact actuation
mechanism, allowing the robot to reach speeds of up to
15 cm/s, it requires a smooth contact surface for proper
robot control. In more recent versions, the authors im-
proved the actuation mechanism to utilize small stepper
motors with wheels [8].

The WsBot [17] is another small footprint (3.3 cm)
robot developed at Universidade Tecnológica Federal
do Paraná, Brazil. This robot has a design similar to
mROBerTO but at an assembly cost of only 17 USD.
In addition to being extremely inexpensive, one may
easily assembly this robot using only off-the-shelf parts.
The WsBot is envisioned for demonstrations of applica-
tions in Industry 4.0, so the robot has a built-in wireless
charging system allowing automatic battery recharges
for continuous operation. Two micro DC motors with
small wheels drive the robot allowing it to reach a speed
of up to 3.5 cm/s. An Espressif ESP8266 (32-bits -
160 MHz) microchip, with built-in Wi-Fi, enables re-
mote control of the robot using a server executing ROS.
The robot does not feature any built-in sensor or exten-
sion boards. Instead, a global localization system based
on an overhead camera and fiducial markers is used for
robot close-loop control.

MicroMVP [38] is a small robot developed at MIT,
USA. It has an open-source design utilizing 3D print-
ing technology, and it is also extremely simple and easy
to assemble. MicroMVP was designed to use only off-
the-shelf components, and it is composed of an AT-
mega32U4 (8-bit at 16 MHz) microcontroller with built-
in xBee support and two geared motors. As WsBot,
MicroMVP does not provide built-in sensors reducing
its applicability as a swarm-capable robot. It also uses
an overhead camera and fiducial markers attached on
top of the robot to localize them, serving as closed-
loop control. However, MicroMVP uses more expensive
components reaching an assembling cost of 90 USD.

Cellulo [24] is one of the world’s first tactile small
robot platforms developed at École Polytechnique Fed-
erale de Lausanne (EPFL), Switzerland. It combines
autonomous capabilities with haptic-enabled multi-user
tactile interaction allowing research on rehabilitation,
gaming, and human-computer interaction. The robots
are designed to be small, sturdy, low-cost, and simple to

6 Paulo Rezeck et al.

operate. The current Cellulo robot is equipped with a
self-localization system based on an activity sheet and
a downward-facing camera, holonomic motion, six ca-
pacitive touch buttons, Bluetooth communication, and
a low-cost PIC32MZ (32-bit at 200 MHz) microcon-
troller. The localization system [10] enables the user to
estimate the global pose of many robots and also is ro-
bust against kidnapping and occlusions (usually due to
user manipulation).

Colias is a novel alternative to AMiR developed
at the University of Lincoln, UK for swarm robotic
applications. Colias sensor unit is based on extension
boards to achieve better modularity. In this way, each
part has different features and functions that can work
independently. The mainboard uses an ATmega168 (8-
bit at 8 MHz) microcontroller to control the motors
and power management. This board houses IR sensors
that provide proximity measurements used for obstacle
detection. The motion is produced by two differential-
driven wheels reaching a maximum speed of 35 cm/s.
The new Colias IV [11] is additionally powered with a
high-level ARM Cortex M4 microcontroller running at
180 MHz, two digital microphones, one 9-axis motion
sensor, and a tiny VGA camera to enable visual tasks. A
Bluetooth extension module enables Colias IV to com-
municate with a remote host device such as a laptop or
a smartphone, receiving motion commands or sending
sensor data.

Mona [1] is a small open-source robot built as a cus-
tomized design of Colias. It has also been designed as
a modular platform, allowing additional modules, such
as wireless communication or a vision board. Mona is
mainly designed to investigate the feasibility of the pro-
posed Perpetual Robotic Swarm [5]. The robot is spe-
cially designed to use an inductive charging approach
and several additional functions such as a radio fre-
quency (RF) transceiver and battery level monitoring
module. This perpetual charging interface allows for
large-scale, long-term autonomy robotics research. Mona
has also been developed to be compatible with several
standard programming environments, and it has been
successfully used for both education and research at
the University of Manchester, UK. The robot has been
produced as a low-cost platform for robotic education
and swarm research in collaboration with a commercial
partner. It retails at 120 USD per robot, and it remains
fully open-source (hardware and software).

2.3 Design Choices

In Table 1, we can see that some design choices are
common to the majority of platforms, such as the use
of wheels for locomotion and the presence of distance
sensors as part of the robot’s sensor suite. On the other
hand, some important features are present in only a few
designs, such as Wi-Fi communication and ROS com-

patibility, probably because these technologies have be-
come more affordable and available recently. In HeRo,
we tried to mix the well-tested and common solutions
with some novel enhancements, making the robots more
capable yet simple and reliable. The next section sum-
marizes HeRo’s main features, which will be detailed in
the remainder of this paper.

2.4 Proposed platform: HeRo

In this paper, we present the project and implementa-
tion of a novel small robot for swarm robotic applica-
tions. The current proposal is an evolution upon the
first, simpler version of the HeRo platform which was
briefly presented in [30]. A summary of the character-
istics of all HeRo versions is described in Table 2. In
this improved version, the mainboard uses an Espres-
sif ESP8266 (32-bits 160 MHz) microcontroller to per-
form the motors’ control and acquire and process sen-
sor data. This microcontroller houses a built-in Wi-Fi
module, allowing the robots to communicate among
themselves robustly and reliably, using TCP/IP pro-
tocols. The locomotion system consists of using two
differential-driven wheels reaching a maximum speed
of 25 cm/s. The board houses a set of sensors such as
8 IR sensors that provide light and proximity measure-
ments for obstacle detection, an inertial motion unit
for improved odometry and general use, and two ro-
tary encoders for localization and motion control. The
mainboard is also modular, allowing the user to attach
several other components such as a camera, motors,
displays, and transistors for communication or localiza-
tion. To facilitate programming, HeRo supports FOTA
(Firmware Over-The-Air) using a Wi-Fi interface. Such
technology allows the users to upload their codes on
many robots remotely. Moreover, HeRo is also a ROS-
compatible robot and communicates using a TCP/IP
connection with a remote computer executing ROS.
Since the robot’s autonomy is an important factor con-
sidering the time and number of experiments, HeRo
provides a long-time autonomy using a powerful Li-
Po battery. The main contributions of the proposed
platform compared to its counterparts are its balance
between low cost and capacity, simplicity in terms of
assembly, and seamless integration with ROS allowing
easy programming.

3 Mechanical and Electrical Design

This section presents the mechanical and electrical de-
sign of our swarm robot. All decisions considered the
maximum use of commercially available components for
ease of production and assembly and minimum possible
price without sacrificing the processing power and sens-
ing capabilities. Therefore, in the following, we present

HeRo 2.0: A Low-Cost Robot for Swarm Robotics Research 7

Table 2: Characteristics of the different HeRo versions.

HeRo v0.1 HeRo v1.0 HeRo v2.0

Board Arduino Nano ESPressif ESP8266 - ESP12 ESPressif ESP8266 - ESP12
MCU Atmel Atmega328 8-bit @ 16 MHz Tensilica LX106 32-bit @ 80/160 MHz Tensilica LX106 32-bit @ 80/160 MHz
Communication RF nrf24l01 2.4 Ghz Wi-Fi 802.11bgn Wi-Fi 802.11bgn
Actuation Servo Motors Servo Motors Servo Motors
Footprint 10 cm 8 cm 7.3 cm
Sensors None 3 x infrared sensors 8 x infrared sensors, encoders and IMU
Battery 3.7 V 1000 mAh Li-Po 3.7 V 1000 mAh Li-Po 3.7 V 1800 mAh Li-Po
Cost* 9 USD 14 USD 18 USD
* parts only

the best-suited system for HeRo after evaluating mul-
tiple microcontroller boards, wireless technologies, sen-
sors, actuators, and model designs for additive manu-
facturing.

3.1 Mechanical Design

One of the primary steps in developing a mobile robot
is modeling its mechanics. The process defines the kine-
matic model of the robot, its actuation mechanism, and
also its structural design.

3.1.1 Kinematic Model

After reviewing the literature, we observed that most
robots proposed for swarm robotics are based on the
differential-driven model. In a nutshell, a differential
wheeled robot is a mobile robot whose movement is
based on two separately driven wheels placed on either
side of the robot body. The robot changes its direction
by varying the relative speeds of its wheels, and there-
fore it does not require an additional steering motor.
We also decided to implement such model since it is
very suitable for designing a small, low-cost robot that
requires good maneuverability and speed using a simple
actuation mechanism.

3.1.2 Actuators and Encoders

A convenient and affordable way to actuate the wheels
of a differential robot is the use of geared DC motors.
Besides actuating the robot, these motors enable the
use of encoders for computing odometry, which is im-
portant for localization and closed-loop motion control.

Although it is intuitive to use geared DC motors
with encoders, such components can significantly in-
crease the cost of the robot. Thinking of a low-cost so-
lution, we decided to use small continuous servo motors
to actuate the robot’s wheels. Such motor is similar to
geared DC motors with an h-bridge component, allow-
ing motor speed control.

Besides having reasonable precision for speed con-
trol, continuous SG90 servo motors contain a built-
in microchip that controls the motor speed and direc-

Fig. 2: Torque transmission mechanism from the motor
to wheel and wheel to the rotary encoder.

tion using only pulse-width modulation (PWM) sig-
nals. In addition, this motor has a significant torque
of 1.8 kgf/cm, which allows us to use a 5 cm diameter
wheel to reach a maximum linear speed of 25 cm/s with
0.3 kgf/cm of torque without losing traction.

Instead of directly connecting the wheel to the mo-
tor shaft, we attach the wheel to the robot chassis and
use a gear mechanism (1:1) to transmit torque from the
motor to the wheel – this further reduces backlash and
wheel misalignment that impact the encoder readings.

Since such motor does not have a built-in encoder,
we took advantage of larger wheels to design a mechan-
ical transmission system (1:6) between the wheel and a
mechanical rotary encoder. By considering the low cost,
availability, and compact form, we selected Kailh rotary
encoders. This encoder is widely used on mouse devices
as a step counter for the scroll button, and the simplest
models, like the ones we use, can count 48 steps per
cycle. However, performing the wheel-encoder trans-
mission (1:288) increases the wheel position measure-
ment to 1.25◦ degrees of resolution, which means that
the robot detects a wheel step of 0.54 mm when it
is moving. Fig. 2 illustrates the motor-wheel and the
wheel-encoder transmission system. The motor, rotary
encoder, and wheel shaft are fixed to the robot chassis,
and the other parts are moving.

8 Paulo Rezeck et al.

Table 3: General specifications of the robot.

Specification Value

Size 0.068× 0.073× 0.076 (L×W ×H) m
Weight 0.156 Kg
Moment of Inertia Ixx = Iyy = 1.27e−4 and Izz = 1.04e−4 Kgm²
Wheels Distance 0.0631 m
Wheel Diameter 0.0492 m
Linear Speed 0.25 m/s

3.1.3 Structural Design

After defining the actuation mechanisms, we proceed
with designing the robot’s chassis. To facilitate assem-
bly and further extensions, we design the robot’s chas-
sis to be modular and 3D-printable so one can easily
print it using a conventional 3D printer. Overall, the
robot structure comprises four main parts: the motor
and board chassis, cover, and the e-Hat module.

The motor chassis supports both motors and the
wheels shaft – where the wheels are attached. As the
robot has two actuated wheels, it has only two con-
tact points on the ground. To better adjust the balance
and alignment of the robot, we created two screwable
castor wheels. These castor wheels are attached to the
motor chassis and allow us to fine-tune the robot’s bal-
ance. On top of the motor chassis, we attach the board
chassis that holds the encoders, battery, and the main
processing board.

Considering further extensions, we take advantage
of a modular chassis to coin the concept of e-Hat. Such
part is attached on top of the robot and works as a
shield extending the robot’s sensorial or acting capabil-
ities. For instance, we developed an e-Hat with an IMU
sensor. Other components, such as a camera, sonar, ac-
tuator, or even a UWB transceiver for indoor localiza-
tion, can also be used.

Finally, we design a cover part to prevent dust ac-
cumulation inside the robot, protecting the main pro-
cessing board and gears. In addition to protection, this
part also enhances the robot’s visual aesthetic. Fig. 3
shows an expanded view of the robot’s design, and Ta-
ble 3 shows some specifications of the robot. An interac-
tive CAD visualization is available at A360 platform2.

3.2 Electrical Design

In addition to the robot’s mechanical design, we also
present its electrical design. This process defines the
electronic components built in the robot, such as pro-
cessing unit, sensing, and power management.

3.2.1 Microcontroller

One of the major decisions concerning the robot’s elec-
trical design is the selection of an appropriate micro-

2 Robot Design CAD: https://a360.co/3lWHiv0

Fig. 3: An expanded view of the robot’s components
and body parts.

controller. This component defines the robot’s compu-
tational capacity and the number and variety of com-
ponents we can use.

After considering many alternatives, we select the
Espressif ESP8266 as the main processing unit. This
microcontroller is remarkably inexpensive given its ex-
cellent processing power (32-bit 160 MHz) with 4 MB
of memory. Also, it has a built-in Wi-Fi microchip that
provides a fast IEEE 802.11 connection with a full TCP/
IP stack. So, the robots can communicate among them
or with a remote computer using robust and scalable
protocols. Moreover, it is efficient, easy to program, and
widespread in Maker communities, allowing others to
easily develop customized modules for the robot.

3.2.2 Sensing

A important requirement for a small robot used in swarm
experiments consists of measuring distances to neigh-
boring robots and obstacles. In HeRo, we chose to use
infrared sensors for this due to their size and cost. We
arrange eight IR transmitters and receivers (TCRT5000)
around the circumference of the robot with 45◦ in-
crements. We selected such sensor because it is cost-
effective and has a reasonable resolution and range.

Although it is not common using this sensor for long
distances (> 10 cm), and even the manufacturer defines
the sensor’s maximum range3 to only 2 cm, we found

3 TCRT5000: www.vishay.com/docs/83760/tcrt5000.pdf

https://a360.co/3lWHiv0
www.vishay.com/docs/83760/tcrt5000.pdf

HeRo 2.0: A Low-Cost Robot for Swarm Robotics Research 9

a strategy to increase its range without a considerable
decrease in accuracy. By properly operating how the
emitter LED activates, we use a technique known as
Pulsed Over-Current Driving LED [18] to increase the
detection range to up to 20 cm. In short, when volt-
age is applied to the poles of the IR emitter LED, for a
short time, the resistance is low (low conductor temper-
ature), which allows a high current flow (up to 3 A for
t < 25µs), causing the LED to emit IR light with high
intensity. If we keep the LED activated, this resistance
tends to increase and stabilize, reducing the intensity of
the light (60 mA max). In our setup, we generate pulses
with a duration of 100 microseconds at 0.2% duty cy-
cle. Thus, as the overcurrent pulse duration is short
enough and the blanking duration for cooling off long
enough, even the cheapest and most commonplace IR
LEDs can be driven with extreme currents. This tech-
nique may reduce the IR LED life span, but probably
the LED should work for more than a year.

To control the IR LED activation, we use a MOS-
FET component. Due to the limited number of ADC
pins on the microcontroller – it only has one pin with
10-bits of resolution – we have to include an 8-channel
analog multiplexer enabling the microcontroller to read
all the eight IR phototransistor. This setup allows us to
precisely measure distances, avoiding environment light
interference since we can measure it by using only the
IR receivers.

As mentioned earlier, the robot has two pairs of ro-
tary encoders coupled to the wheels by a drive mech-
anism. An encoder is a sensor that generates digital
signals in response to the motion, providing informa-
tion about position, velocity, and direction. As the typ-
ical mouse wheel internally works as a precise encoder,
we took advantage of this inexpensive component (less
than USD 0.10) and used it as a robotic sensor. It com-
prises a conductive disc and three contacts that gener-
ate two square waves in quadrature when the encoder
shaft rotates, enabling counting 48 pulses per shaft rev-
olution and also identifying the turn direction.

In addition to the encoders, the robot also houses
two WS2812b RGBA LED indicators used for status
monitoring or debugging. These addressable LEDs have
an IC built right into the LED, allowing communica-
tion via a one-wire interface (it uses one digital pin to
control multiple LEDs in series). We can also control
the brightness, and the color of each LED individually,
which allows us to produce unique and complex effects
for status in a simple way.

3.2.3 E-Hat

Besides the built-in features, the robot functionality can
be extended using e-Hats. This robot module works as a
shield, allowing users to create/customize specific mod-
ules for their applications. This module is coupled to
a 4-pin bus on top of the robot configured to use I2C

(a) IMU e-Hat.

(b) Display e-Hat.

Fig. 4: Example of multiple e-Hat versions for the HeRo
platform.

or UART protocols. In addition to communication, the
bus also provides 5V (800 mA) to power the module. In
this paper, we developed two e-Hats for demonstration
and experimentation (see Fig. 4). The first one consists
of an e-Hat IMU composed of an MPU6050 sensor with
gyroscope and accelerometer that can be fused into the
velocity and position estimation to account for odome-
try errors, such as the slip produced by the wheels. The
second one is an e-Hat display that can be used either
as a user interface or as part of a location system based
on camera and fiducial markers.

3.2.4 Power Supply

Since the robot’s autonomy is an important factor con-
sidering the time and number of experiments, HeRo
uses a 3.7 V 1800 mAh Li-Po battery. The battery volt-
age is regulated by a MT3608 DC-DC step-up module,
managing the board power supply to 5 V. These com-
ponents enable the robot to perform up to 3 hours of
experiments, considering the continuous use of all com-
ponents. The motors are directly powered by a step-up
power module avoiding any voltage drop impacting the
robot’s speed. In addition to this module, we also use
a TP4056 module to recharge the battery using a USB
cable.

3.2.5 Assembly

Because most of the robot’s parts are off-the-shelf com-
ponents, we decided to simplify the mounting and wrap
them right on a PCB board. To increase reproducibil-
ity, we carefully design this PCB board so that even
novice users can assemble it. As an alternative, the user

10 Paulo Rezeck et al.

Table 4: Parts cost per robot unit.

Parts Quantity Cost (USD)

Servo Motors SG-90 2 2.06
Mouse Encoder 48 PPR 2 0.10
ESP8266 Nodemcu 1 2.50
Rubber O Ring 38mm 2 0.10
IR TCRT5000 8 0.68
LED RGB WS2812b 2 0.51
IMU MPU6050 1 0.85
LI-PO Battery 3.7 V 1800 mAh 1 5.85
PCB board and Components 1 4.30
3D Printer Parts (PLA) and Fastening 1 1.50

Total 18.72 USD

can also assemble it in several specific PCB manufac-
turers, which nowadays attend at a highly affordable
cost. Fig. 5 shows the proposed front and back views
PCB board’s design. A complete tutorial for the robot
assembly can be found on the project’s website4.

3.3 Part Costs

After defining the mechanical and electrical components
of the robot and its assembly process, we can estimate
its cost. Table 4 gives a summary of the cost of the
components used in HeRo. All part prices assume retail
buying from standard part distributors on the Internet.
We expect this cost would be greatly reduced if parts
are acquired in bulk directly from manufacturers.

Finally, after carrying out the robot assemblies, we
arrived at the result shown in the Fig. 6.

4 Software and Communication Architecture

In addition to the physical robot, we also describe a
computational framework to facilitate its use in swarm
applications. In this section, we present a software and
communication architecture that enables the program-
ming of multiple robots. Moreover, we also present a
simulated environment, useful in the early stages of ap-
plication development.

4.1 Software Architecture

A typical robot swarm dilemma is how to program mul-
tiple robots quickly, easily, and efficiently. A practice
that has become very common in the experimentation
stage is to use a master-slave architecture in which
robots (slaves) remotely communicate with a computer
(master) running the user application. This strategy is
highly efficient as it does not require the user to burn
the firmware every time he needs to change his appli-
cation. Despite being convenient, remotely executing

4 Tutorial: https://verlab.github.io/hero_common

the application on a computer does not always cap-
ture effects that impact the application at the deploy-
ment level, e.g., local communication issues, low pro-
cessing capacity, and other errors. Thus, strategies that
use FOTA (Firmware Over-The-Air) technology enable
users to remotely load their applications on the robot
and run it directly on it.

In this work, we propose a flexible architecture to
use any of the programming practices mentioned above.
Our architecture is composed of a firmware compatible
with ROS (Robot Operating System) and FOTA. In
the following, we detail the software architecture.

4.1.1 Firmware

The firmware is one of the fundamental parts of the
robot since it computes the control of the motors and
access to the sensor’s data. For HeRo, we chose to im-
plement the firmware using the Arduino IDE. Such plat-
form is easy to use and widespread in makers’ communi-
ties, making the firmware easier to follow and modify.
It also provides many libraries enabling us to control
the microcontroller ports and handle actuators, sensors,
and TCP sockets.

The firmware is built on top of the rosserial frame-
work allowing the robots to be compatible with the
ROS middleware. Rosserial comprises different tools,
including a protocol for wrapping standard ROS serial-
ized messages and multiplexing multiple topics and ser-
vices over network sockets. Such framework abstracts
several communication concepts, allowing a compact
and efficient implementation. In practice, the user only
needs to configure a few communication parameters so
that the robots can connect using TCP/IP network-
ing with a remote computer running ROS. To facilitate
this configuration process avoiding keep reprogramming
the firmware), we implemented a remote configuration
mode for the robot using a web interface (Fig. 7a). To
open this interface, the users must first turn on the
robot in configuration mode. This mode creates an ac-
cess point where the user connects using a computer or
a smartphone. By using a browser, the user can access
the robot webpage and set up its name, access point cre-
dentials where the ROS server is running, ROSMaster
IP address, and port. Once the robot is properly config-
ured, it automatically connects to the ROS server, and
then the user access the robot’s features through topics
and services (Fig. 7b). This entire process can be done
in less than a minute, and the configuration remains
saved even if the robot is turned off.

In addition to providing a master-slave communica-
tion architecture, the firmware is also composed of some
basic modules that compute the robot’s kinematic con-
trol, odometry, and sensor data. Next, we describe all
these modules present in the firmware.

https://verlab.github.io/hero_common

HeRo 2.0: A Low-Cost Robot for Swarm Robotics Research 11

Fig. 5: Overview of HeRo’s PCB board.

Fig. 6: Top, bottom, front, and left views of the HeRo swarm platform.

Sensors In its basic form (without the e-Hat), the
robot has eight infrared transceivers and two quadra-
ture mechanical rotary encoders as sensors. The eight
infrared sensors are mounted around the robot to pro-
vide a complete field of view of the environment. These
are connected to a 10-bits ADC port on the microcon-
troller through an 8-channel analog multiplexer allow-
ing the estimation of the distance to an obstacle as
well as the ambient light once we can control the in-
frared emitter. Obstacle detection and distance estima-
tion use fundamental principles of electromagnetic ra-
diation and its reflection. Mathematically, the reflected
signal intensity measured with a sensor is modeled by [6]:

s(d, γ) =
α

d2
cos(γ) + β, (1)

where s(d, γ) is the output value of the sensor, d is the
distance to the object, and γ is the angle of incidence
with the surface; the model variable α includes several
parameters such as the reflectivity coefficient, output
power of the emitted IR light and the sensitivity of the
sensor and it is estimated empirically; β is the offset
value of the amplifier and ambient light effect and it is
measured regularly after performing the Equation 1.

As mentioned, HeRo has two quadrature encoders
attached to each wheel. A quadrature encoder, also

known as an incremental rotary encoder, is commonly
used to measure the speed and direction of a rotating
shaft. The encoders’ channels are connected to the mi-
crocontroller’s interrupt pins. Each pulse calls an inter-
rupt routine in the microcontroller, increasing an inde-
pendent counter variable to estimate how far each wheel
has turned. To estimate the velocity of the wheel, we
measure the frequency of the pulses. The output of the
encoders is used as an input to a controller for closed-
loop motion control and for localization.

Motion Control We previously defined the robot as
a two-wheel differential-drive mobile robot composed of
two servo motors, each with a quadrature encoder. Due
to non-holonomic constraints, the robot cannot move
along its wheel axis concerning its body reference, but it
can change its direction by varying the relative instan-
taneous speed of its wheels and hence does not require
an additional steering motor. One of the most suitable
ways of controlling this robot’s motion in 2D space con-
sists of controlling its linear and angular speed. By as-
suming classical kinematics modeling for a differential-
drive mobile robot [32], one can determine the velocity
of the robot in its own reference frame or in the inertial
frame, as shown in Fig. 8. Formally, the instantaneous

12 Paulo Rezeck et al.

Client Mode

AP Mode

(a) Remote configuration mode.

AP Mode

Client Mode

Client Mode

Client Mode

(b) ROS communication mode.

Fig. 7: Robot firmware modes: (a) remote configuration
and (b) ROS communication mode. The first one helps
the user configure the robots to connect to a server run-
ning ROS without requiring reprogramming the robot.
After properly setting up the robot, it connects au-
tomatically with the ROS server allowing the user to
send and receive commands through ROS topics and
services.

velocity, expressed with respect to the robot body frame
and the inertial frame, is given by:

vR(t) =

vx(t)0
ω(t)

 , (2)

vI(t) =

vx(t) cos(ω(t))vx(t) sin(ω(t))
ω(t)

 . (3)

Despite one may control the robot’s velocity in any
reference frame, in this case, we find controlling it re-
garding the robot frame more convenient as it can sim-
plify the control problem and make it easier to achieve
the desired motion. From now on, we will describe how
we control the instantaneous velocity of the robot in
its own frame. That is, we want to control the linear
speed vx(t) along the XR-axis and its angular speed
ω(t) around the ZR-axis for vR(t).

By assuming such velocities as inputs, we must map
them into wheel velocities so that we can control the

Fig. 8: Robot represented in an inertial reference frame.

robot. The problem of mapping the relationship be-
tween robot velocity and wheel speed is called inverse
kinematics. That is, given the linear speed vx(t) and
angular speed ω(t), we can compute the desired left
speed vl(t) and right speed vr(t), to produce the spe-
cific motion of the robot (see Fig. 9). The equation be-
low describes the inverse kinematic model concerning
the robot reference frame:

[
vl(t)
vr(t)

]
=

[
2vx(t)−lω(t)

2
2vx(t)+lω(t)

2

]
, (4)

where vl(t) and vr(t) are the tangential speeds of the
left and right wheels; vx(t) and ω(t) are the linear and
angular speeds of the robot in its own reference frame;
and l is the distance between the left and right wheels.

Fig. 9: Robot local reference frame.

After computing the desired tangential speed on
each wheel, we need to control the motors so that they
maintain these speeds. The proportional integral deriva-
tive (PID) controller is the most common control al-

HeRo 2.0: A Low-Cost Robot for Swarm Robotics Research 13

gorithm used for this application. It can correct the
present error through proportional action, eliminate ste-
ady state offsets through integral action, and better es-
timate future trends through a derivative action. The
mathematical model of a PID is defined by

u(t) = Kpe(t) +Ki

∫ t

0

e(t) dt+Kd
de(t)

dt
, (5)

where u(t) is the control signal to each motor, that is,
PWM signals; dt is the control loop interval time; e(t)
is the error regarding the desired and current tangen-
tial speeds of each wheel; and Kp, Ki and Kd, all non-
negative, denote the coefficients for the proportional,
integral, and derivative terms, respectively.

To estimate the error e(t), we subtract the desired
tangential speed from the current tangential speed esti-
mated by the encoders. That is, we count how far each
wheel has turned and compute the rate for a loop in-
terval. Formally, the current tangential speed for both
wheels is computed by

v̄l(t) =
∆sl
dt

, (6)

v̄r(t) =
∆sr
dt

, (7)

where ∆sl and ∆sr are the distance each wheel has
traveled for a time interval dt, respectively.

Moreover, we use a simple Kalman filter to reduce
the noise of the reading and improve the quality of both
estimated speeds. Formally, we compute the following
process for each wheel measurement:

K =
σ−
e

σ−
e + σm

, (8)

v̂ = v̂− +K(v̄ − v̂−), (9)

σe = (1−K)σ−
e + |v̂− − v̂|q, (10)

where σe is the estimation uncertainty adjusted by the
filter; σm is the measurement uncertainty, that is, how
much we expect the estimated speed can vary; K is
called Kalman gain; v̄ is the current measured speeds,
i.e., v̄l(t) and v̄r(t); v̂ is the filtered speed; q is the pro-
cess variance, that is, how fast the measurement moves;
and finally, the superscript (−) indicates previous val-
ues of a variable.

Finally, we summarize the robot velocity control as
a block diagram, depicted in Fig. 10.

Inverse Kinematic Model

Linear
Speed

Angular
Speed

Left Wheel
Speed

Right Wheel
Speed

PID Controller

Right Motor
PWM

Right Motor
Dynamics

Right Motor
Encoder

Filtered
Right Wheel

Speed

Kalman Filter

Applications

Right Wheel
Speed

PID Controller

Left Motor
PWM

Left Motor
Dynamics

Left Motor
Encoder

Filtered
Left Wheel

Speed

Kalman Filter

Left Wheel
Speed

Fig. 10: Diagram illustrating the velocity control of a
differential robot.

Localization Odometry is the most used method for
determining the position of a mobile robot concerning
an inertial reference frame (see Fig. 8). In most prac-
tical applications, odometry provides easily accessible
real-time positioning information in-between periodic
absolute position measurements. Several different types
of sensors are commonly used for odometry. This work
addresses odometry by placing encoders on each wheel
and counting how far each wheel has turned. Using
these two measurements, we can estimate how far the
robot has moved forward and its heading. The distance
traveled by the robot is the average of how much each
wheel has turned and is presented in Equation 11. On
the other hand, the heading of the robot is estimated
(assuming insignificant wheel slip) from the difference
of these displacements over the distance between the
wheels and is presented in Equation 12.

∆L =
r(∆sr +∆sl)

2
, (11)

∆θ =
r(∆sr −∆sl)

l
, (12)

where ∆sr and ∆sl represent how much each encoder
has turned in the loop time interval; r is the wheel
radius; and l represents the distance between the wheels
of the robot, as shown in Fig. 9.

Once we have computed how far the robot has trav-
eled and turned, we can integrate this information to
estimate its current pose regarding the inertial refer-
ence frame. Considering the pose of the robot at time t
in a plane is given by the state vector

14 Paulo Rezeck et al.

X(t) =

x(t)y(t)
θ(t)

 , (13)

the pose of the robot after a loop time interval dt is
given by

X(t+ dt) = X(t) +

 ∆L
∆θ (sin(θ(t) +∆θ)− sin(∆θ)
∆L
∆θ (cos(θ(t) +∆θ)− cos(∆θ)

∆θ

 ,

(14)

where ∆θ is the variation of the robot orientation in
ZI -axis in a time interval, that is, ∆θ = θ(t+dt)−θ(t).

Note that if the robot moves in a straight line, the
change in angle ∆θ is zero, and the odometry model (14)
becomes undefined since ∆L

∆θ is undefined. In this case,
a different model should be used to compute the odom-
etry, such as using the change in distance ∆L. Thus, in
order to approach this special case, we test this condi-
tion, and if it occurs, the following model is computed
for the odometry,

X(t+ dt) = X(t) +

∆L cos(θ(t))
∆L sin(θ(t))

θ(t)

 . (15)

4.2 Communication Architecture

In order to provide communication between a worksta-
tion and the robots, we implement HeRo as a ROS-
compatible robot by connecting them using TCP/IP.

The Robot Operating System [27] is an open-source,
meta-operating system for robotic applications. It pro-
vides similar services expected from a typical operat-
ing system, including hardware abstraction, low-level
device control, implementation of commonly-used func-
tionality, message-passing between processes, and pack-
age management. It also provides tools and libraries for
obtaining, building, writing, and running code across
multiple platforms.

The communication is conducted by a publish/sub-
scribe model, where topics made up of predefined mes-
sage structures can be communicated between multiple
nodes (processes) in the network. These topics, for ex-
ample, odometry, can be accessed by any node in the
network, allowing for easy scalability of publishers and
subscribers. In this way, robots can readily communi-
cate with other robots in the network in a well-defined
way.

However, most swarm robots, including HeRo, are
unable to process a full-fledged native ROS instance
given the restricted CPU resources. To integrate these
functionalities to less powerful microcontrollers without
a complete instance of ROS, we implemented the com-
munication module over the rosserial protocol, which
has been proved as a reliable and scalable communi-
cation method for swarm systems [36]. Rosserial5 is
a protocol for wrapping standard ROS serialized mes-
sages and multiplexing multiple topics and services over
a network socket. In short, the rosserial nodes convert
data from normal structured XMLRPC protocol han-
dled by TCP natively in ROS to serialize data out to the
microcontroller. This node also deserializes data from
the microcontroller back into the correct message struc-
tures to be sent around the conventional ROS network.

While the robot is compatible with ROS 1 using
the rosserial framework, it has not yet been possible
to make it fully compatible with ROS 2. One challenge
is that the rosserial framework has not been ported to
ROS 2, and microROS6 (rosserial alternative in ROS
2) does not have support for the microcontroller used
by the robot (ESP8266). As an alternative for ROS 2
users to be able to interface with the robot, we provide a
containerized environment using the Docker platform7.
This way, ROS 2 users can use packages such as ROS-
Bridge that allow ROS 2 to interface with the ROS 1
package. Figure 11 shows an overview of the communi-
cation architecture.

In theory, the network’s bandwidth limits the num-
ber of connected robots: as more robots are added, more
connections are made, taking up capacity. However, we
did not observe any overhead communicating with mul-
tiple robots, even using a consumer-grade wireless net-
work router. A typical network addresses 254 devices,
but network techniques (e.g., subnets) allow increasing
this limit as much as we need. A complete study show-
ing the reliability and scalability of using this protocol
for swarm robots is present in [36].

4.3 Simulation and Visualization

The execution of simulations plays an essential role in
robotics research as a tool for quick and efficient testing
of new concepts, strategies, and algorithms. Moreover,
good visualization tools are very important during the
experiments to better track and observe the robot ex-
ecution. In this sense, we also developed a simulation
model of HeRo that can be used together with Gazebo
and RViz.

5 Rosserial: http://wiki.ros.org/rosserial
6 microROS: https://micro.ros.org
7 Docker: https://www.docker.com

http://wiki.ros.org/rosserial
https://micro.ros.org
https://www.docker.com

HeRo 2.0: A Low-Cost Robot for Swarm Robotics Research 15

Desktop Computer

ROS 1
TCP/IP

Networking

Swarm

ROSSerial Server Applications

ROS Master

Topics

A
dv

er
tis

e/
S

ub
sc

rib
e

A
dv

er
tis

e/
S

ub
sc

rib
e

XMLRPC
ProtocolROSSerial

Protocol

ROS 2

Applications

ros1_bridge

Optional

Topics Topics

Fig. 11: An overview of the communication process. The robot’s microcontroller acts as a bridge to the sensors and
actuators and then rosserial acts as another bridge from the microcontroller to ROS. ROS 2 users can optionally
instantiate a ROS 1 bridge interface and interact with the robots. The system infrastructure is organized in Docker
containers, which promotes its installation and use.

Fig. 12: Multiple instances of HeRo being simulated in
the Gazebo simulator.

4.3.1 Gazebo Simulator

In order to make simulations with our robots in ROS,
we decide to use Gazebo since it is fully integrated with
ROS. Gazebo [15] is a multi-robot simulator for com-
plex indoor and outdoor environments. It is suitable for
simulating a population of robots, sensors, and objects
in a three-dimensional world. ROS and Gazebo use the
3D model of a robot or its parts, whether to simulate
or visualize them, through the XML files, called Unified
Robot Description Format (URDF). This file describes
all the structures of the robot, such as its parts, joints,
dimensions, and texture, among others.

After describing the robot using the URDF file, cre-
ating a simulated model using the built-in plugins pro-
vided by the Gazebo is straightforward. However, this
approach is inefficient when simulating multiple robots
and requires a high computational cost. To reduce con-
sumption and increase the number of simulated robots,
we designed a compact plugin that implements all the
robot’s functionalities. In this way, we optimized the
maximum processing performed by each simulated robot
without overloading Gazebo’s physics engine. Fig. 12
shows multiples instances of HeRo being simulated in
the Gazebo simulator.

4.3.2 Robot Visualization Tool

In addition to the simulation, it is also essential to have
a robot visualization tool that shows the state of sensors
and actuators during the experiment. In ROS, we can
visualize the robot’s state using the RViz visualization
tool. This tool provides 3D visualization of the robot by
loading the URDF file and can project sensors data ob-
tained by the ROS topics such as odometry, laser, and
IMU using plugins. Note that RViz is not a simulator
but only a visualization tool. In this way, the robot vi-
sualized in this tool can be real or simulated depending
only on who publishes the information. Fig. 13 shows
an example of viewing a real robot in Rviz. In the im-
age, we can see the 3D model of the robot overlaying
a colored axis that indicates the robot’s pose relative
to an initial frame (colored axis in the background of
the scene). The sequence of small axes indicated the
temporal pose of the robot computed by the odometry.
Colored spheres around the robot can move closer or
further away from the robot and indicate the readings
of the distance sensors. On the right, we can follow the
linear velocity of each robot’s wheel.

4.4 Programming

The communication architecture defined for our robot
allows it to be programmed in two different ways: using
the ROS framework or the OTA firmware technology.

In the first mode, we can program and run appli-
cations on a server, which communicates and controls
each robot in a decentralized way. In other words, each
algorithm is executed in a process on the server, and
this process has access via Wi-Fi with its respective
robot. This mode is very convenient and scalable in the
early stages of testing with multiple robots. Further-
more, using the ROS framework for implementation,
we have a series of tools and may use different pro-
gramming languages.

16 Paulo Rezeck et al.

Fig. 13: RViz showing a single HeRo robot. RViz is a 3D
visualization tool for ROS allowing control and observe
the current state of the robot.

On the other hand, processing algorithms remotely
is not always suitable for robot swarm applications. In
this case, the algorithm must run directly on the robot,
maintaining the convenience of programming the robots
simultaneously. In this programming mode, we use the
OTA technology to burn the firmware in several robots
using Wi-Fi. This process uses the Arduino IDE to im-
plement and compile the application and then uses the
command line to transmit the binary code for robots.
Despite being convenient, this mode is limited in terms
of the availability of high-level tools. In addition, it re-
quires using a programming language compatible with
the microcontroller, in this case, C/C++.

5 Performance Evaluation

This section presents a series of experiments that evalu-
ate our robot’s performance as a capable swarm robot.
Initially, we analyzed motion control and evaluate the
robot’s odometry in comparison to the E-puck, a popu-
lar commercial swarm robot. We also evaluate and dis-
cuss the performance and scalability of communication
when using ROS and make an analysis of the robot’s
energy consumption when demanding different types of
applications.

5.1 Motion Control Analysis

In this experiment, we evaluated the robot velocity con-
trol, which consists of ensuring that the robot reaches
a desired velocity concerning its own reference frame
by controlling the wheel speeds. As previously detailed,
the wheel speed control uses a PID controller. The feed-
back information consists of the current wheel speed,
estimated by the encoder’s readings and filtered by the
Kalman filter. The parameters used by both methods
were all obtained empirically and defined as: Kp =

1200, Ki = 2300, and Kd = 0.1 for the PID param-
eters, and 0.02 m/s of sensor noise (measurement un-
certainty) and 0.2 as process variance for the Kalman
filter.

One way to evaluate the controller’s performance is
to check its response time and residual ripple. Thus,
we observe the controller’s behavior when starting with
the robot halted, and then we set a desired linear and
angular speeds to vx = 0.0 m/s and ω = 3.17 rad/s so
that the robot turn in place for 4.5 seconds and then
stop. Fig. 14 shows the performance of the robot.

As expected, we observe a similar response time for
the left and right wheels, reaching the desired tangen-
tial speed (vl = −0.1 m/s and vr = 0.1 m/s) after
approximately 1.5 s. Although we can make the system
more responsive, we opted for a more conservative con-
troller with no overshoot to avoid sudden movements
make it difficult to control the robot. After both wheels
reach the desired speeds, we measure a mean absolute
error of 0.00033 ± 0.0023 m/s for the left wheel and
0.00010± 0.0014 m/s, which is remarkable considering
the low-cost components used within the robot. More-
over, by controlling the speed for each wheel, the robot
reached the desired linear and angular speeds with a
mean absolute of 0.00022 ± 0.0010 m/s for the linear
speed and 0.00358± 0.0530 rad/s for angular speed.

5.2 Localization

In this experiment, we evaluate the odometry of our
robot and compare the results with the one obtained
by the E-puck [20]. To better analyze the capabilities of
these robots, we implement the same odometry model
and use the same experimental setup.

This comparison is interesting because E-puck uses
relatively expensive stepper motors against the inex-
pensive servo motor used in our robot. The E-puck
computed its odometry by counting steps commanded
to each motor, reaching a maximum resolution of 1024
steps per wheel revolution, which is more than the pro-
vided by our encoders (288 steps per revolution). How-
ever, there is no feedback when the wheel steps, so it
probably produces more false-positives counts.

To measure the pose estimation accuracy for both
robots, we use the OptiTrack tracking system8 as a
ground truth reference. The trajectory performed by
both robots is a rectangular shape (1.3x1.1 m), delim-
ited by four points. We control each robot to move to
the four points consecutively until it completes three
loops. Both robots traveled equal distances while main-
taining the same velocity to keep the comparison as
reliable as possible.

Besides comparing the odometry produced by both
robots, we extended another HeRo with an IMU e-
Hat. Combining these two sensors improved our robot’s

8 OptiTrack: http://optitrack.com/

http://optitrack.com/

HeRo 2.0: A Low-Cost Robot for Swarm Robotics Research 17

0.00

0.02

Sp
ee

d
(m

/s
)

Linear Speed
v̄x

v̂x

vx

0

2

4

Sp
ee

d
(ra

d/
s)

Angular Speed
ω̄

ω̂

ω

0.10

0.05

0.00

Sp
ee

d
(m

/s
)

Left Wheel Speed
v̄l

v̂l

vl

0 1 2 3 4 5
Time (s)

0.00

0.05

0.10

Sp
ee

d
(m

/s
)

Right Wheel Speed
v̄r

v̂r

vl

Fig. 14: Analysis of the robot speed control showing the
accuracy in reaching the desired linear vx and angular
ω speeds concerning the robot reference frame. To reach
such motion, the robot computes the desired speeds on
each wheel, vl, and vr, and then uses a PID controller
to control the motors. The current wheel speeds are
computed from the encoder’s readings, v̄l and v̄r, and
filtered, v̂l and v̂r, to reduce noise.

orientation estimate and, consequently, improved the
robot’s odometry. This IMU is composed of a gyro-
scope and an accelerometer, and it has a built-in MPU
(motion processing unit) that combines both sensors,
generating an orientation estimation. In this case, the
orientation estimation provided by the IMU and the
odometry drift (no zero mean noise), but the IMU ori-
entation estimations drifts are smaller. In this way, we
replaced the orientation of the odometry with the one
provided by the IMU. Fig. 15 shows the trajectories
performed by (a) an E-puck, (b) a HeRo without e-hat,
and (c) a HeRo using e-hat with a gyroscope and ac-
celerometer. A video of this experiment is available on
Youtube9.

As observed, the HeRo’s odometry is comparable to
the E-puck’s. Given that E-puck is one of the most ro-
bust and well-used robots for swarm experimentation,
we believe that our robot also proves to be an attractive
solution. Moreover, the components used by HeRo are
highly affordable when compared to E-puck. Further-
more, using the module with inertial sensors improved

9 Odometry Comparison: https://youtu.be/9s6Fg20uOpc

the robot’s orientation, making the localization more
robust, allowing its use in other applications.

5.3 Distance Sensor

This experiment assesses the performance of the IR sen-
sor concerning the distance estimation to a white obsta-
cle. Before evaluating the performance of the distance
sensor, we need to characterize the sensor (convert the
analog signal to distance).

To convert the infrared sensor readings to distance,
we first take the sensor readings using a 10-bits ADC
input for various object distances, ranging from 0 to
40 cm, in one-centimeter intervals. To remove light in-
terferences, we first read the IR sensor without activat-
ing the IR emitter and then turn the emitter on and
take another reading. The difference between these two
readings returns a more robust measurement of the ef-
fective light intensity reflected by the obstacle.

Fig. 16a shows these measurements assuming log-
scale for y-axis. As observed, it seems possible to detect
objects within the range of 30 cm, but to better esti-
mate the distance, we decided to limit such a range to
20 cm. After collecting these measurements, we perform
the distance sensor calibration solving the Equation 1.
Fig. 16b shows the distance estimates for the object
after the calibration process.

5.4 Communication

Communication mechanisms is swarm robots must be
scalable to accommodate a large number of robots. This
experiment evaluates the communication scalability re-
garding the bandwidth (the maximum amount of data
that can travel through a channel) when using ROS to
program the robots. We estimate the number of robots
supported in the network by computing the total band-
width used by one robot and the maximum bandwidth
supported in the network.

Table 5 shows the measured bandwidth of each topic
(communication channel) between the robot and a server
executing ROS. We assume that these topics publish
or subscribe to messages at specific frequencies, set as
the default rate of HeRo processing. We captured these
measurements using the rostopic tool which provides
the packet size of a single message considering: an over-
head of 20 Bytes for the TCP packet (for the Wi-Fi
data connection) and 8 Bytes for rosserial serialization;
and the message data size, depending on each type of
topic. In addition to packet size, the rostopic tool also
provides the actual bandwidth for each topic, allowing
us to compute the total bandwidth used by one robot
(44 KBps).

https://youtu.be/9s6Fg20uOpc

18 Paulo Rezeck et al.

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
X (m)

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

Y
(m

) Groundtruth
Odometry

(a) E-puck odometry.

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
X (m)

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

Y
(m

) Groundtruth
Odometry

(b) HeRo odometry.

0.6 0.4 0.2 0.0 0.2 0.4 0.6
X (m)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Y
(m

) Groundtruth
Odometry with Gyro

(c) HeRo + IMU odometry.

Fig. 15: Trajectory performed by: (a) E-puck, (b) HeRo and (c) HeRo using e-Hat with inertial sensors.

(a)

(b)

Fig. 16: Analysis of the infrared distance sensor. (a)
Shows the readings obtained from a single IR sensor
as a function of the distance to the white target; and
(b) shows the estimated distance after calibrating the
sensor for a maximum range of 20 cm.

Assuming the Wi-Fi module used in our robot can
handle at least 1 MBps10, we are only using 4.2% of
the maximal capacity. Moreover, the robot connects
to a consumer-grade wireless network route in infras-
tructure mode that provides a maximum bandwidth of
150 Mbps (or 18 MBps). Considering that one HeRo
uses only 44 KBps to communicate, theoretically, we
estimate that almost 420 robots are supported in this
10 Datasheet: www.espressif.com/sites/default/files/
documentation/0a-esp8266ex_datasheet_en.pdf

Table 5: Maximum amount of data that can travel
through a ROS topic. These topics are operating at
different frequencies, set as the default rate of HeRo
processing.

ROS Topics Frequency (Hz) Packets Size (KB) Bandwidth (KBps)

/imu 30 0.320 8.60
/laser 20 0.130 3.20
/odom 30 0.730 18.55
/encoder 30 0.100 3.15
/led 2 0.016 0.321
/cmd_vel 20 0.048 0.967
/tf 30 0.068 8.542

Total 43.33

network. Despite typical Dynamic Host Configuration
Protocol (DHCP) can not address all these IPs, one
may use other ways to avoid this limitation, such as
subnetwork or using multiple routers.

5.5 Power Consumption

Another critical concern is the robot’s power auton-
omy, which defines its operating time. This experiment
analyzes the power consumption of the components, es-
tablishing the power autonomy of our robot. To better
understand the consumption of the robot, we measure
the current (mA) used by the robot in three typical
situations: (i) when sensors and communication are ac-
tive, (ii) with the indicator LEDs turned on, and (iii)
with the motors active. Table 6 shows the consumption
(in mA) of the robot for these combinations.

For the first case, we observe the effect of the fre-
quency of publication in the robot’s power consump-
tion. Thus, we measured the current for three differ-
ent frequency rates (5, 20, and 40 Hz) and noticed that
these rates have a minimal impact on consumption. For
the second case, we kept the communication frequency
at 20 Hz, and turned on the two indicator LEDs, and
changed its white light intensity from half to full. We
noticed that the light intensity used by the LEDs sig-
nificantly impacts the consumption (almost 50 mA). In
the last case, we kept the communication frequency rate
and turned on the two motors. To observe the impact

www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf

HeRo 2.0: A Low-Cost Robot for Swarm Robotics Research 19

of the robot’s velocity on the power consumption, we
measured the current for two different velocities. As ex-
pected, the motors are the most power-consumer com-
ponents in the robot, and their velocity proportionally
affects the power consumption.

In order to analyze the power consumption in a gen-
eral way, we assumed a typical use for these three com-
binations, in which we retained the sensors and commu-
nication at 20 Hz; indicator LEDs with half intensity;
and motors reaching a speed of 10 cm/s. Thus, we ob-
served the consumption reaching 550 mA with a slight
deviation of 25 mA. Suppling the robot with a 3.7 V
1800 mAh Li-Po battery, we estimate the minimum and
maximum autonomy of 3 h and 9 h, respectively.

Table 6: Power consumption of HeRo considering a volt-
age of 3.7 V. Typical power consumption is the average
of 30 samples.

Mode Min Typical (mA) Max

Sensing & Communication at 5 Hz 152 161 ±9 180
Sensing & Communication at 20 Hz1 153 175 ±16 205
Sensing & Communication at 40 Hz 170 183 ±9 205

Sensing & Communication1 & LEDs (50%)2 187 205 ±14 245
Sensing & Communication1 & LEDs (100%) 225 247 ±2 292

Sensing & Communication1 & Motors (10 cm/s)3 455 512 ±30 584
Sensing & Communication1 & Motors (25 cm/s) 613 660 ±25 717

Typical Use123 396 550 ±47 628

1 Typical frequency rate used for sensing and communication.
2 Common brightness used in the LEDs indicators (White color).
3 Common velocity performed by the robot during the experiments.

6 Applications

In addition to evaluating the robot’s performance, we
also demonstrate its capability executing a set of differ-
ent applications.

6.1 Mapping

This experiment shows the capacity of a single real
robot to perform a mapping task. We configured the
robot to communicate with a remote computer running
ROS. Then we used the Gmapping11 package, a laser-
based SLAM (Simultaneous Localization and Mapping)
algorithm provided as a standard ROS package for map-
ping an environment. We set up an environment com-
posed of white cardboards forming a scene similar to a
hall contained in an area of 1.20×1.20 m. Fig. 17 shows
the occupancy map produced by the robot. The se-
quence of axes (x-red, y-green, z-blue coming out of the
figure) projected onto the map represents the temporal
pose of the robot computed from the robot’s odome-
try. At the bottom it is a top-view image showing the
11 GMapping: http://wiki.ros.org/gmapping

Fig. 17: An occupancy map produced by the robot using
only eight IR sensors and odometry. At the top, it is the
RViz visualization tool showing the map computed by
the robot. The sequence of axes (x-red, y-green) shows
the trajectory computed by the odometry. At the bot-
tom is a top-view image showing the environment and
the ground truth trajectory performed by the robot.

environment setup and the ground truth trajectory per-
formed by the robot. A video showing the execution of
this experiment is available on Youtube12.

Overall, the mapping task is challenging and re-
quires sophisticated sensors such as LiDAR and more
accurate localization methods. However, we obtain in-
teresting results using only a small robot with eight
IR sensors and wheel odometry. Even though the ex-
cellence of the mapping is in the SLAM algorithm, we
corroborate the robot’s capability to perform this task
satisfactorily, which makes it interesting for cooperative
mapping tasks.

12 Mapping Performance: https://youtu.be/_RWCCI8BI1s

http://wiki.ros.org/gmapping
https://youtu.be/_RWCCI8BI1s

20 Paulo Rezeck et al.

6.2 Decentralized coverage

This experiment shows five robots performing a cover-
ing task in a small bounded environment (0.8×1.20 m).
Unlike the previous experiment, which requires more
computational processing, this one implemented the cov-
erage method directly in the robot’s firmware without
requiring it to communicate with a server running ROS.
The coverage method consists of randomly navigating
the robots through the environment and avoiding ob-
stacles and collisions with other robots using only local
sensing. Fig. 18 shows a sequence of images captured
by an overhead camera. Each of the five robots is pro-
grammed to emit a different color, making them easier
to see and identify. The lines in the images represent
the path performed by each robot. A video of this ex-
periment is available on Youtube13.

In this experiment, the coverage area is relatively
small, given the number of robots. We set a small area
to verify that the robots could perform maneuverability
and deal with possible interference between the IR sen-
sors. As a result, we verified that the robots were navi-
gating through the environment, avoiding collisions for
long periods, which shows that the operation of multi-
ple robots in a small area is feasible.

6.3 Flocking Behavior

Another experiment demonstrates the robot’s capac-
ity to perform a flocking behavior. We used five robots
initially randomly distributed in an environment in this
experiment. The flocking algorithm implemented in this
experiment is decentralized and only requires the rela-
tive position and velocity among the neighbors’ robots
(see [29] for more details). Since we do not yet have a set
of sensors onboard the robot that estimates such infor-
mation, we set a remote server executing ROS to emu-
late such a sensor. In short, we use an overhead camera
and the Apriltag tracker algorithm [35,19] to locate the
robots in the scene and then compute their relative po-
sitions and velocity to provide to the algorithm. Fig. 19
shows a sequence of images captured by the overhead
camera. The figure shows the initial configuration of the
robots. After a runtime, the robots manage themself to
aggregate and navigate the environment as a group. A
video of this experiment is available on Youtube14.

In this experiment, we verified the robot’s motion
control response when reproduced with other robots.
Indeed different robot requires specific calibration pa-
rameters for PID. Concerning the flocking task, it is re-
quired cohesive and aligned navigation between agents.
If the robot’s motion control is not properly adjusted,
this may result in incorrect group navigation. As an
outcome, we verified that the robots are well calibrated
13 Decentralized Coverage: https://youtu.be/KmQXBcXKBtE
14 Flocking Behavior: https://youtu.be/u7iioSKtHU8

and capable of performing the flocking task, resulting
in aligned and cohesive navigation between the robots.

6.4 Cooperative Transportation

Finally, we conducted experiments evaluating the robot’s
performance in a cooperative transportation task. In
this task, the swarm must coordinate to push an object
toward its goal location, taking advantage of multiple
robots’ forces applied to the object. The strategy im-
plemented in these experiments is described in [28] and
does not require prior knowledge of the shape and lo-
cation of the object, only its target. So, the robots can
navigate through the environment, form groups, and
when they detect the object, they can move around it
looking for contact positions that allow the object to
be pushed towards its objective. Despite being a decen-
tralized strategy and not requiring global information
on the swarm or the object, robots must estimate their
neighbors’ relative position and velocity and distinguish
between object and obstacles detection. As in the pre-
vious task, we used the overhead camera location sys-
tem to emulate such sensors. Fig. 20 shows a sequence
of snapshots taken by the overhead camera. In the se-
quence, the robots group and coordinate to transport
the object to its goal. A video of this experiment is avail-
able on Youtube 15. As expected, we verified that the
robot could properly control its motion while interact-
ing with objects. Moreover, it also has enough traction
to start pushing it, which allows the robots to perform
cooperative transport tasks.

7 Conclusion

This work presented HeRo, a novel open-source swarm
robotic platform that is cost-effective, capable, and scal-
able, developed using off-the-shelf components and ad-
ditive manufacturing. This robot was specially designed
for swarm applications, given its small size, sensing,
and networking capabilities. The proposed robot has
WiFi communication, over-the-air firmware upgrades
and is fully compatible with ROS, facilitating the de-
velopment of newer functionalities. We also presented
a simulation environment for the HeRo platform us-
ing Gazebo, a popular simulation engine for continuous
testing and quick prototyping. Experiments evaluating
the sensor accuracy, odometry, autonomy, swarm com-
munication, and control show a performance in par or
superior to other commercial or more expensive plat-
forms. Mapping, decentralized coverage, flocking be-
havior and transportation tasks performed with a group
of HeRo robots validate the robot’s capacities for real-
world swarm applications and educational use.

15 Cooperative Transport: https://youtu.be/hAS7FKYkKWQ

https://youtu.be/KmQXBcXKBtE
https://youtu.be/u7iioSKtHU8
https://youtu.be/hAS7FKYkKWQ

HeRo 2.0: A Low-Cost Robot for Swarm Robotics Research 21

(a) t = 2 s. (b) t = 4 s. (c) t = 10 s.

(d) t = 20 s. (e) t = 80 s. (f) t = 120 s.

Fig. 18: Snapshots of an experiment showing five HeRo robots performing decentralized coverage.

(a) t = 0 s. (b) t = 5 s. (c) t = 10 s.

(d) t = 15 s. (e) t = 25 s. (f) t = 30 s.

Fig. 19: Snapshots of an experiment showing five HeRo robots performing flocking behavior.

7.1 Limitations

Despite the robot’s remarkable performance, there are
still some issues that impact its use and maintenance.
Below we list and discuss some of these points.

– Reproduction/Assembly: although the robot has
a simple mechanical design, the use of additive man-
ufacturing technologies such as conventional 3D print-
ers does not always allow a proper fit of the parts.
Then, it requires manual adjustments or finishing

during assembly, demanding time and effort. This
process is essential for the robot’s transmission mech-
anisms, impacting wheel movement and encoder read-
ings if left unattended.

– Robot calibration: the robot is designed to use af-
fordable parts and components that have been avail-
able for several years. As expected, low-cost compo-
nents also impact robot performance, requiring the
user to calibrate the IR sensors and motors occa-
sionally. As each component has different charac-

22 Paulo Rezeck et al.

(a) t = 0 s. (b) t = 3 s. (c) t = 10 s.

(d) t = 15 s. (e) t = 20 s. (f) t = 25 s.

Fig. 20: Snapshots of an experiment showing five real HeRo robots transporting an object toward its goal location.

teristics, the calibration process is required for each
of the eight IR sensors and the two servo motors.

– Wireless recharge: another point is the lack of
convenience in charging the battery of each robot
by plugging in a cable. Recently, wireless charging
modules have become commonplace, but they still
come at a high cost compared to the robot’s cost.
Although the idea of having an automatic recharge
system is interesting, due to the cost and size, we
decided to wait and deal with the manual recharge
of the robots.

– Mechanical wear: finally, another point impacted
by the use of low-cost components is their durability.
Although the rotary encoder is an interesting solu-
tion, some low-cost models has a short lifespan for
our application, requiring replacement after months
of use. In addition to the encoder, we also have to
check the gear mechanism since we use ABS/PLA
material that wears out with use and storage.

7.2 Future Work

We are continuously working on improving HeRo capa-
bilities. In a near future, we intend to develop newer
expansions to the platform in the form of e-Hats, im-
prove the internal filters for localization and improve
the assembly process of the platform. We will also val-
idate newer forms of localization using UWB or other
indirect wireless methods. A full migration to ROS2 will
also be performed to maintain the software stack of the
robot up to date with current robotics advancements.

Conflict of interest

The authors have no conflicts of interest to declare.

References

1. Arvin, F., Espinosa, J., Bird, B., West, A., Watson,
S., Lennox, B.: Mona: an affordable open-source mobile
robot for education and research. Journal of Intelligent
& Robotic Systems pp. 1–15 (2018)

2. Arvin, F., Samsudin, K., Ramli, A.R., Bekravi, M.: Im-
itation of honeybee aggregation with collective behavior
of swarm robots. International Journal of Computational
Intelligence Systems 4(4), 739–748 (2011)

3. Arvin, F., Samsudin, K., Ramli, A.R., et al.: Develop-
ment of a miniature robot for swarm robotic application.
International Journal of Computer and Electrical Engi-
neering 1(4), 436–442 (2009)

4. Arvin, F., Turgut, A.E., Bellotto, N., Yue, S.: Compari-
son of different cue-based swarm aggregation strategies.
In: International Conference in Swarm Intelligence, pp.
1–8. Springer (2014)

5. Arvin, F., Watson, S., Turgut, A.E., Espinosa, J., Kra-
jník, T., Lennox, B.: Perpetual robot swarm: long-term
autonomy of mobile robots using on-the-fly inductive
charging. Journal of Intelligent & Robotic Systems 92(3-
4), 395–412 (2018)

6. Benet, G., Blanes, F., Simó, J.E., Pérez, P.: Using in-
frared sensors for distance measurement in mobile robots.
Robotics and autonomous systems 40(4), 255–266 (2002)

7. Caprari, G., Siegwart, R.: Design and control of the mo-
bile micro robot alice. In: Proceedings of the 2nd Inter-
national Symposium on Autonomous Minirobots for Re-
search and Edutainment, AMiRE 2003: 18-20 February
2003, Brisbane, Australia, pp. 23–32. CITI (2003)

8. Eshaghi, K., Li, Y., Kashino, Z., Nejat, G., Benhabib, B.:
mroberto 2.0–an autonomous millirobot with enhanced
locomotion for swarm robotics. IEEE Robotics and Au-
tomation Letters 5(2), 962–969 (2020)

9. Farrow, N., Klingner, J., Reishus, D., Correll, N.: Minia-
ture six-channel range and bearing system: algorithm,
analysis and experimental validation. In: 2014 IEEE

HeRo 2.0: A Low-Cost Robot for Swarm Robotics Research 23

International Conference on Robotics and Automation
(ICRA), pp. 6180–6185. IEEE (2014)

10. Hostettler, L., Özgür, A., Lemaignan, S., Dillenbourg,
P., Mondada, F.: Real-time high-accuracy 2d localiza-
tion with structured patterns. In: Robotics and Automa-
tion (ICRA), 2016 IEEE International Conference on, pp.
4536–4543. IEEE (2016)

11. Hu, C., Fu, Q., Yue, S.: Colias iv: The affordable mi-
cro robot platform with bio-inspired vision. In: Annual
Conference Towards Autonomous Robotic Systems, pp.
197–208. Springer (2018)

12. Kernbach, S.: Swarmrobot. org-open-hardware micro-
robotic project for large-scale artificial swarms. arXiv
preprint arXiv:1110.5762 (2011)

13. Kim, J.Y., Colaco, T., Kashino, Z., Nejat, G., Benhabib,
B.: mroberto: A modular millirobot for swarm-behavior
studies. In: 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2109–2114.
IEEE (2016)

14. Klingner, J., Kanakia, A., Farrow, N., Reishus, D., Cor-
rell, N.: A stick-slip omnidirectional powertrain for low-
cost swarm robotics: Mechanism, calibration, and con-
trol. In: Intelligent Robots and Systems (IROS 2014),
2014 IEEE/RSJ International Conference on, pp. 846–
851. IEEE (2014)

15. Koenig, N.P., Howard, A.: Design and use paradigms for
gazebo, an open-source multi-robot simulator. In: IROS,
vol. 4, pp. 2149–2154. Citeseer (2004)

16. Le Goc, M., Kim, L.H., Parsaei, A., Fekete, J.D., Drag-
icevic, P., Follmer, S.: Zooids: Building blocks for swarm
user interfaces. In: Proceedings of the 29th Annual Sym-
posium on User Interface Software and Technology, pp.
97–109. ACM (2016)

17. Limeira, M.A., Piardi, L., Kalempa, V.C., de Oliveira,
A.S., Leitão, P.: Wsbot: A tiny, low-cost swarm robot
for experimentation on industry 4.0. In: 2019 Latin
American Robotics Symposium (LARS), 2019 Brazilian
Symposium on Robotics (SBR) and 2019 Workshop on
Robotics in Education (WRE), pp. 293–298. IEEE (2019)

18. Lin, M.S., Chen, C.L.: An led driver with pulse current
driving technique. IEEE transactions on power electron-
ics 27(11), 4594–4601 (2011)

19. Malyuta, D.: Guidance, navigation, control and mission
logic for quadrotor full-cycle autonomy. Master’s thesis,
ETH Zurich (2018)

20. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci,
C., Klaptocz, A., Magnenat, S., Zufferey, J.C., Floreano,
D., Martinoli, A.: The e-puck, a robot designed for ed-
ucation in engineering. In: Proceedings of the 9th con-
ference on autonomous robot systems and competitions,
LIS-CONF-2009-004, pp. 59–65. IPCB: Instituto Politéc-
nico de Castelo Branco (2009)

21. Mondada, F., Franzi, E., Guignard, A.: The develop-
ment of khepera. In: Experiments with the Mini-Robot
Khepera, Proceedings of the First International Khepera
Workshop, CONF, pp. 7–14 (1999)

22. Mondada, F., Franzi, E., Ienne, P.: Mobile robot minia-
turisation: A tool for investigation in control algorithms.
In: Experimental robotics III, pp. 501–513. Springer
(1994)

23. Olaronke, I., Rhoda, I., Gambo, I., Oluwaseun, O., Janet,
O.: A systematic review of swarm robots. Curr. J. Appl.
Sci. Technol. 39, 79–97 (2020)

24. Özgür, A., Lemaignan, S., Johal, W., Beltran, M., Briod,
M., Pereyre, L., Mondada, F., Dillenbourg, P.: Cellulo:
Versatile handheld robots for education. In: Proceed-
ings of the 2017 ACM/IEEE International Conference on
Human-Robot Interaction, pp. 119–127. ACM (2017)

25. Pickem, D., Glotfelter, P., Wang, L., Mote, M., Ames, A.,
Feron, E., Egerstedt, M.: The robotarium: A remotely
accessible swarm robotics research testbed. In: Robotics

and Automation (ICRA), 2017 IEEE International Con-
ference on, pp. 1699–1706. IEEE (2017)

26. Pickem, D., Lee, M., Egerstedt, M.: The gritsbot in its
natural habitat-a multi-robot testbed. In: Robotics and
Automation (ICRA), 2015 IEEE International Confer-
ence on, pp. 4062–4067. IEEE (2015)

27. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., Ng, A.Y., et al.: Ros: an open-
source robot operating system. In: ICRA workshop on
open source software, 3.2, p. 5. Kobe, Japan (2009)

28. Rezeck, P., Assunção, R.M., Chaimowicz, L.: Coopera-
tive object transportation using gibbs random fields. In:
2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 9131–9138 (2021). DOI
10.1109/IROS51168.2021.9635928

29. Rezeck, P., Assunção, R.M., Chaimowicz, L.: Flocking-
segregative swarming behaviors using gibbs random
fields. In: 2021 IEEE International Conference on
Robotics and Automation (ICRA), pp. 8757–8763 (2021).
DOI 10.1109/ICRA48506.2021.9561412

30. Rezeck, P.A.F., Azpurua, H., Chaimowicz, L.: Hero: An
open platform for robotics research and education. In:
2017 Latin American Robotics Symposium (LARS) and
2017 Brazilian Symposium on Robotics (SBR), pp. 1–6
(2017). DOI 10.1109/SBR-LARS-R.2017.8215317

31. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nag-
pal, R.: Kilobot: A low cost robot with scalable oper-
ations designed for collective behaviors. Robotics and
Autonomous Systems 62(7), 966–975 (2014)

32. Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D.: Intro-
duction to autonomous mobile robots. MIT press (2011)

33. Slavkov, I., Carrillo-Zapata, D., Carranza, N., Diego, X.,
Jansson, F., Kaandorp, J., Hauert, S., Sharpe, J.: Mor-
phogenesis in robot swarms. Science Robotics 3(25)
(2018)

34. Soares, J.M., Navarro, I., Martinoli, A.: The khepera iv
mobile robot: performance evaluation, sensory data and
software toolbox. In: Robot 2015: second Iberian robotics
conference, pp. 767–781. Springer (2016)

35. Wang, J., Olson, E.: Apriltag 2: Efficient and robust fidu-
cial detection. In: 2016 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp.
4193–4198. IEEE (2016)

36. West, A., Arvin, F., Martin, H., Watson, S., Lennox, B.:
Ros integration for miniature mobile robots. In: Annual
Conference Towards Autonomous Robotic Systems, pp.
345–356. Springer (2018)

37. Wilson, S., Glotfelter, P., Wang, L., Mayya, S., No-
tomista, G., Mote, M., Egerstedt, M.: The robotarium:
Globally impactful opportunities, challenges, and lessons
learned in remote-access, distributed control of multi-
robot systems. IEEE Control Systems Magazine 40(1),
26–44 (2020). DOI 10.1109/MCS.2019.2949973

38. Yu, J., Han, S.D., Tang, W.N., Rus, D.: A portable,
3d-printing enabled multi-vehicle platform for robotics
research and education. In: Robotics and Automation
(ICRA), 2017 IEEE International Conference on, pp.
1475–1480. IEEE (2017)

	Introduction
	Related Work
	Mechanical and Electrical Design
	Software and Communication Architecture
	Performance Evaluation
	Applications
	Conclusion

